LOCAL WELL POSEDNESS OF CAUCHY PROBLEM FOR VISCOUS DIFFUSION EQUATIONS

被引:2
|
作者
Liu, Yacheng [1 ]
Xu, Runzhang [2 ]
机构
[1] Harbin Engn Univ, Coll Sci, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Coll Automat, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Viscous diffusion equations; Cauchy problem; W-k; W-p solution; blow up; CAHN-HILLIARD EQUATION;
D O I
10.1142/S0129167X09005364
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the Cauchy problem of multi-dimensional viscous diffusion equations. By using an equivalent integral equations, we get the existence of local W-k,W-p solutions. And we prove the finite time blow up of solutions under appropriate conditions.
引用
收藏
页码:509 / 519
页数:11
相关论文
共 50 条
  • [1] Local well-posedness for the Cauchy problem of the MHD equations with mass diffusion
    Fan, Jishan
    Ni, Lidiao
    Zhou, Yong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (07) : 792 - 797
  • [2] LOCAL WELL POSEDNESS OF THE CAUCHY PROBLEM FOR THE LANDAU-LIFSHITZ EQUATIONS
    Fuwa, Atsushi
    Tsutsumi, Masayoshi
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2005, 18 (04) : 379 - 404
  • [3] WELL-POSEDNESS OF THE CAUCHY PROBLEM FOR CONVECTION-DIFFUSION EQUATIONS IN UNIFORMLY LOCAL LEBESGUE SPACES
    Haque, M. D. Rabiul
    Ioku, Norisuke
    Ogawa, Takayoshi
    Sato, Ryuichi
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2021, 34 (3-4) : 223 - 244
  • [4] On the Well-Posedness of the Cauchy Problem for the Generalized Telegraph Equations
    Kostin, V. A.
    Kostin, A. V.
    Salim, Badran Yasim Salim
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2014, 7 (03): : 50 - 59
  • [5] Well-Posedness for the Cauchy Problem for a System of Semirelativistic Equations
    Fujiwara, Kazumasa
    Machihara, Shuji
    Ozawa, Tohru
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (01) : 367 - 391
  • [6] Well-Posedness for the Cauchy Problem for a System of Semirelativistic Equations
    Kazumasa Fujiwara
    Shuji Machihara
    Tohru Ozawa
    Communications in Mathematical Physics, 2015, 338 : 367 - 391
  • [7] Well-posedness of the Cauchy problem for the fractional power dissipative equations
    Miao, Changxing
    Yuan, Baoquan
    Zhang, Bo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (03) : 461 - 484
  • [8] Well-Posedness of the Cauchy Problem for Stochastic Evolution Functional Equations
    M. M. Vas’kovskii
    Differential Equations, 2018, 54 : 775 - 789
  • [9] Well-posedness of the Cauchy problem for p-evolution equations
    Ascanelli, Alessia
    Boiti, Chiara
    Zanghirati, Luisa
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (10) : 2765 - 2795
  • [10] Well-Posedness of the Cauchy Problem for Stochastic Evolution Functional Equations
    Vas'kovskii, M. M.
    DIFFERENTIAL EQUATIONS, 2018, 54 (06) : 775 - 789