Benchmarking graph neural networks for materials chemistry

被引:190
|
作者
Fung, Victor [1 ]
Zhang, Jiaxin [2 ]
Juarez, Eric [1 ]
Sumpter, Bobby G. [1 ]
机构
[1] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA
[2] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA
关键词
MACHINE; REPOSITORY; MOLECULES;
D O I
10.1038/s41524-021-00554-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graph neural networks (GNNs) have received intense interest as a rapidly expanding class of machine learning models remarkably well-suited for materials applications. To date, a number of successful GNNs have been proposed and demonstrated for systems ranging from crystal stability to electronic property prediction and to surface chemistry and heterogeneous catalysis. However, a consistent benchmark of these models remains lacking, hindering the development and consistent evaluation of new models in the materials field. Here, we present a workflow and testing platform, MatDeepLearn, for quickly and reproducibly assessing and comparing GNNs and other machine learning models. We use this platform to optimize and evaluate a selection of top performing GNNs on several representative datasets in computational materials chemistry. From our investigations we note the importance of hyperparameter selection and find roughly similar performances for the top models once optimized. We identify several strengths in GNNs over conventional models in cases with compositionally diverse datasets and in its overall flexibility with respect to inputs, due to learned rather than defined representations. Meanwhile several weaknesses of GNNs are also observed including high data requirements, and suggestions for further improvement for applications in materials chemistry are discussed.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Rethinking Graph Regularization for Graph Neural Networks
    Yang, Han
    Ma, Kaili
    Cheng, James
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4573 - 4581
  • [42] Graph Neural Networks with Local Graph Parameters
    Barcelo, Pablo
    Geerts, Floris
    Reutter, Juan
    Ryschkov, Maksimilian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [43] Semisupervised Graph Neural Networks for Graph Classification
    Xie, Yu
    Liang, Yanfeng
    Gong, Maoguo
    Qin, A. K.
    Ong, Yew-Soon
    He, Tiantian
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (10) : 6222 - 6235
  • [44] Learning graph normalization for graph neural networks
    Chen, Yihao
    Tang, Xin
    Qi, Xianbiao
    Li, Chun-Guang
    Xiao, Rong
    NEUROCOMPUTING, 2022, 493 : 613 - 625
  • [45] Learning Graph Matching with Graph Neural Networks
    Dobler, Kalvin
    Riesen, Kaspar
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, ANNPR 2024, 2024, 15154 : 3 - 12
  • [46] Improving materials property predictions for graph neural networks with minimal feature engineering 
    Cong, Guojing
    Fung, Victor
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (03):
  • [47] Coarse-Grained Crystal Graph Neural Networks for Reticular Materials Design
    Korolev, Vadim
    Mitrofanov, Artem
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (06) : 1919 - 1931
  • [48] Graph convolutional neural networks with global attention for improved materials property prediction
    Louis, Steph-Yves
    Zhao, Yong
    Nasiri, Alireza
    Wang, Xiran
    Song, Yuqi
    Liu, Fei
    Hu, Jianjun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (32) : 18141 - 18148
  • [49] Prediction of large magnetic moment materials with graph neural networks and random forests
    Kaba, Sekou-Oumar
    Groleau-Pare, Benjamin
    Gauthier, Marc-Antoine
    Tremblay, A. -m. s.
    Verret, Simon
    Gauvin-Ndiaye, Chloe
    PHYSICAL REVIEW MATERIALS, 2023, 7 (04)
  • [50] Predicting stress, strain and deformation fields in materials and structures with graph neural networks
    Marco Maurizi
    Chao Gao
    Filippo Berto
    Scientific Reports, 12