Benchmarking graph neural networks for materials chemistry

被引:190
|
作者
Fung, Victor [1 ]
Zhang, Jiaxin [2 ]
Juarez, Eric [1 ]
Sumpter, Bobby G. [1 ]
机构
[1] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA
[2] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA
关键词
MACHINE; REPOSITORY; MOLECULES;
D O I
10.1038/s41524-021-00554-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graph neural networks (GNNs) have received intense interest as a rapidly expanding class of machine learning models remarkably well-suited for materials applications. To date, a number of successful GNNs have been proposed and demonstrated for systems ranging from crystal stability to electronic property prediction and to surface chemistry and heterogeneous catalysis. However, a consistent benchmark of these models remains lacking, hindering the development and consistent evaluation of new models in the materials field. Here, we present a workflow and testing platform, MatDeepLearn, for quickly and reproducibly assessing and comparing GNNs and other machine learning models. We use this platform to optimize and evaluate a selection of top performing GNNs on several representative datasets in computational materials chemistry. From our investigations we note the importance of hyperparameter selection and find roughly similar performances for the top models once optimized. We identify several strengths in GNNs over conventional models in cases with compositionally diverse datasets and in its overall flexibility with respect to inputs, due to learned rather than defined representations. Meanwhile several weaknesses of GNNs are also observed including high data requirements, and suggestions for further improvement for applications in materials chemistry are discussed.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Graph neural networks
    Corso G.
    Stark H.
    Jegelka S.
    Jaakkola T.
    Barzilay R.
    Nature Reviews Methods Primers, 4 (1):
  • [22] Graph neural networks
    不详
    NATURE REVIEWS METHODS PRIMERS, 2024, 4 (01):
  • [23] Graph Neural Networks for Graph Drawing
    Tiezzi, Matteo
    Ciravegna, Gabriele
    Gori, Marco
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4668 - 4681
  • [24] Graph Rewriting for Graph Neural Networks
    Machowczyk, Adam
    Heckel, Reiko
    GRAPH TRANSFORMATION, ICGT 2023, 2023, 13961 : 292 - 301
  • [25] Graph Mining with Graph Neural Networks
    Jin, Wei
    WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 1119 - 1120
  • [26] Graph Clustering with Graph Neural Networks
    Tsitsulin, Anton
    Palowitch, John
    Perozzi, Bryan
    Mueller, Emmanuel
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [27] Benchmarking Neural Networks For Quantum Computations
    Nguyen, Nam H.
    Behrman, E. C.
    Moustafa, Mohamed A.
    Steck, J. E.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (07) : 2522 - 2531
  • [28] Materials fatigue prediction using graph neural networks on microstructure representations
    Thomas, Akhil
    Durmaz, Ali Riza
    Alam, Mehwish
    Gumbsch, Peter
    Sack, Harald
    Eberl, Chris
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [29] Materials fatigue prediction using graph neural networks on microstructure representations
    Akhil Thomas
    Ali Riza Durmaz
    Mehwish Alam
    Peter Gumbsch
    Harald Sack
    Chris Eberl
    Scientific Reports, 13
  • [30] Graph neural networks for simulating crack coalescence and propagation in brittle materials
    Perera, Roberto
    Guzzetti, Davide
    Agrawal, Vinamra
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 395