Online Parameter Estimation of a Transient Induction Generator Model Based on the Hybrid Method

被引:9
|
作者
Farias, Ecyo R. C. [1 ]
Cari, Elmer P. T. [1 ]
Erlich, Istvan [2 ]
Shewarega, Fekadu [2 ]
机构
[1] Univ Sao Paulo, Engn Sch Sao Carlos, BR-13566590 Sao Carlos, SP, Brazil
[2] Univ Duisburg Essen, D-47057 Duisburg, Germany
基金
巴西圣保罗研究基金会;
关键词
Induction generator; parameter estimation; trajectory sensitivity; mean-variance mapping optimization; MVMO; hybrid method; TRAJECTORY SENSITIVITY; IDENTIFICATION;
D O I
10.1109/TEC.2018.2808238
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The knowledge of induction generator models and their parameters has gained great importance in recent years. Induction generators have been widely used in several applications, including renewable energy systems, because of their simple construction and easy operation. A successful parameter's estimation of induction generators strongly depends on the availability of a good initial parameter guess. When it is not available, the estimation process could take plenty of time to converge or even to diverge. This paper proposes a hybrid method that estimates parameters of induction generator transient models from disturbance measurements through a hybrid algorithm based on trajectory sensitivity and mean-variance mapping optimization. The method is robust regarding initial parameter guesses, requires no disconnection of the generator from the grid, and uses measurements commonly available in practice, such as generator terminal voltage and current. The system modeling for estimation purposes is based on a squirrel-cage induction generator, represented by a third-order model, connected to both a grid and a static load. The method was tested with actual measurements obtained from a small sized power system designed in the laboratory. The results show correct estimates were successfully achieved and the model can represent the dynamic response of the system accurately.
引用
收藏
页码:1529 / 1538
页数:10
相关论文
共 50 条
  • [41] Online Parameter Estimation for Model-Based Force Control in Milling Processes
    Petruck, Henning
    Schlick, Christopher M.
    Stemmler, Sebastian
    Abel, Dirk
    Adams, Oliver
    Klocke, Fritz
    IFAC PAPERSONLINE, 2016, 49 (12): : 634 - 639
  • [42] Parameter Estimation of the Synchronous Generator Exciter based on PSO
    Choi, HyungJoo
    Lee, HeungHo
    2014 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2014, : 529 - 534
  • [43] Use of the finite element method for parameter estimation of the circuit model of a high power synchronous generator
    Berhausen, S.
    Paszek, S.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2015, 63 (03) : 575 - 582
  • [44] Application of active identification method to synchronous generator parameter estimation
    Agahi, H.
    Karrari, M.
    Rosehart, W.
    Malik, O. P.
    2006 POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-9, 2006, : 4257 - 4263
  • [45] Induction motor Parameter Estimation Using Hybrid Genetic Algorithm
    Sundareswaran, K.
    Shyam, H. N.
    Palani, S.
    James, Joby
    IEEE REGION 10 COLLOQUIUM AND THIRD INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS, VOLS 1 AND 2, 2008, : 74 - +
  • [46] Hybrid Artificial Neural Network for Induction Motor Parameter Estimation
    Marcelino Gutierrez-Villalobos, Jose
    Agustin Martinez-Hernandez, Moises
    Mendoza-Mondragon, Fortino
    Rodriguez-Resendiz, Juvenal
    Rodriguez-Ponce, Rafael
    2014 6TH EUROPEAN EMBEDDED DESIGN IN EDUCATION AND RESEARCH CONFERENCE (EDERC), 2014, : 85 - 89
  • [47] Online Estimation Method for Respiratory Parameters Based on a Pneumatic Model
    Shi, Yan
    Niu, Jinglong
    Cao, Zhixin
    Cai, Maolin
    Zhu, Jian
    Xu, Weiqing
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2016, 13 (05) : 939 - 946
  • [48] A Hybrid Method for Online Rotor Parameters Estimation
    Li, Huiyuan
    Su, Yixin
    Hong, Min
    Long, Fei
    PROCEEDINGS OF THE 2013 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2013, : 824 - 827
  • [49] A method for model identification and parameter estimation
    Bambach, M.
    Heinkenschloss, M.
    Herty, M.
    INVERSE PROBLEMS, 2013, 29 (02)
  • [50] A parameter estimation method for model analysis
    Oh S.
    Kwon S.
    Yun J.H.
    Journal of Applied Mathematics and Computing, 2006, 22 (1-2) : 373 - 385