Online Parameter Estimation of a Transient Induction Generator Model Based on the Hybrid Method

被引:9
|
作者
Farias, Ecyo R. C. [1 ]
Cari, Elmer P. T. [1 ]
Erlich, Istvan [2 ]
Shewarega, Fekadu [2 ]
机构
[1] Univ Sao Paulo, Engn Sch Sao Carlos, BR-13566590 Sao Carlos, SP, Brazil
[2] Univ Duisburg Essen, D-47057 Duisburg, Germany
基金
巴西圣保罗研究基金会;
关键词
Induction generator; parameter estimation; trajectory sensitivity; mean-variance mapping optimization; MVMO; hybrid method; TRAJECTORY SENSITIVITY; IDENTIFICATION;
D O I
10.1109/TEC.2018.2808238
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The knowledge of induction generator models and their parameters has gained great importance in recent years. Induction generators have been widely used in several applications, including renewable energy systems, because of their simple construction and easy operation. A successful parameter's estimation of induction generators strongly depends on the availability of a good initial parameter guess. When it is not available, the estimation process could take plenty of time to converge or even to diverge. This paper proposes a hybrid method that estimates parameters of induction generator transient models from disturbance measurements through a hybrid algorithm based on trajectory sensitivity and mean-variance mapping optimization. The method is robust regarding initial parameter guesses, requires no disconnection of the generator from the grid, and uses measurements commonly available in practice, such as generator terminal voltage and current. The system modeling for estimation purposes is based on a squirrel-cage induction generator, represented by a third-order model, connected to both a grid and a static load. The method was tested with actual measurements obtained from a small sized power system designed in the laboratory. The results show correct estimates were successfully achieved and the model can represent the dynamic response of the system accurately.
引用
收藏
页码:1529 / 1538
页数:10
相关论文
共 50 条
  • [21] A Hybrid Algorithm for Parameter Estimation (HAPE) for Diesel Generator Sets
    Overlin, Matthew R.
    Macomber, James
    Smith, Christopher
    Daniel, Luca
    Corbett, Edward
    Kirtley, James L.
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2022, 37 (03) : 1704 - 1714
  • [22] Efficient Online PMSM Parameter Estimation Method
    Do G.-H.
    Choi H.H.
    Journal of Institute of Control, Robotics and Systems, 2022, 28 (12) : 1121 - 1126
  • [23] A New Method for Induction Motors Parameter Estimation Using Genetic Algorithms and Transient Speed measurements
    Trentin, Andrew
    Zanchetta, Pericle
    Wheeler, Patrick
    Clare, Jon
    Wood, Robert
    Katsis, Dimos
    CONFERENCE RECORD OF THE 2006 IEEE INDUSTRY APPLICATIONS CONFERENCE, FORTY-FIRST IAS ANNUAL MEETING, VOL 1-5, 2006, : 2435 - 2440
  • [24] Online Parameter Estimation for MPC Model Uncertainties Based on LSCR Approach
    Kalmuk, Alexander
    Tyushev, Kirill
    Granichin, Oleg
    Yuchi, Ming
    2017 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA 2017), 2017, : 1256 - 1261
  • [25] Parameter Estimation of Brushless Doubly-Fed Induction Generator Based On Steady Experimental Results
    Su, Jingyuan
    Chen, Yu
    Sun, Lei
    Liu, Xinmin
    Kang, Yong
    2015 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2015, : 2800 - 2804
  • [26] Dynamic to Static Model Comparison and Hybrid Metaheuristic Optimization in Induction Motor Parameter Estimation
    Santana, Nelson H. B.
    Yahyaoui, Imene
    Oliveira, Flavio D. C.
    Amorim, Arthur E. A.
    Simonetti, Domingos S. L.
    Rocha, Helder R. O.
    ELECTRONICS, 2025, 14 (03):
  • [27] Online Parameter Estimation of a Brushless Synchronous Starter/Generator with Signal Injection
    Mao, Shuai
    Liu, Weiguo
    Jiao, Ningfei
    Peng, Jichang
    Zhang, Zan
    2018 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2018, : 5035 - 5039
  • [28] Transient Model of Hybrid Concentrated Photovoltaic with Thermoelectric Generator
    Mahmoudinezhad, Sajjad
    Qing, Shaowei
    Rezaniakolaei, Alireza
    Rosendahl, Lasse Aistrup
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY, 2017, 142 : 564 - 569
  • [29] Parameter Dependent Model Based on Linkages for State, Parameter and Input Estimation Method
    Yamakawa, Masafumi
    Asai, Toru
    Ariizumi, Ryo
    Azuma, Shun-Ichi
    2020 59TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2020, : 1696 - 1701
  • [30] A fault location method based on online parameter estimation under dynamic conditions
    Liu, Yuping
    Lin, Sheng
    He, Wen
    He, Zhengyou
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2013, 37 (13): : 103 - 108