Solving order constraints in logarithmic space

被引:0
|
作者
Krokhin, A [1 ]
Larose, B
机构
[1] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
[2] Champlain Reg Coll, St Lambert, PQ J4P 3P2, Canada
[3] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
来源
STACS 2003, PROCEEDINGS | 2003年 / 2607卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We combine methods of order theory, finite model theory, and universal algebra to study, within the constraint satisfaction framework, the complexity of some well-known combinatorial problems connected with a finite poset. We identify some conditions on a poset which guarantee solvability of the problems in (deterministic, symmetric, or non-deterministic) logarithmic space. On the example of order constraints we study how a certain algebraic invariance property is related to solvability of a constraint satisfaction problem in non-deterministic logarithmic space.
引用
收藏
页码:379 / 390
页数:12
相关论文
共 50 条
  • [31] On solving univariate sparse polynomials in logarithmic time
    Rojas, JM
    Ye, YY
    JOURNAL OF COMPLEXITY, 2005, 21 (01) : 87 - 110
  • [32] TWO APPROACHES FOR SOLVING MATHEMATICAL PROGRAMS WITH SECOND-ORDER CONE COMPLEMENTARITY CONSTRAINTS
    Zhu, Xi-De
    Pang, Li-Ping
    Lin, Gui-Hua
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2015, 11 (03) : 951 - 968
  • [33] Solving Fredholm Second Order Integro-Differential Equation with Logarithmic Kernel Using the Airfoil Collocation Method
    Ramdani, N. E.
    Hadj, A.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (01): : 79 - 86
  • [34] A Lower Order Discrete-Time Recurrent Neural Network for Solving High Order Quadratic Problems with Equality Constraints
    Liao, Wudai
    Wang, Jiangfeng
    Wang, Junyan
    ADVANCES IN NEURAL NETWORKS - ISNN 2010, PT 1, PROCEEDINGS, 2010, 6063 : 193 - 198
  • [35] A CLASS OF SECOND ORDER DIFFERENCE APPROXIMATIONS FOR SOLVING SPACE FRACTIONAL DIFFUSION EQUATIONS
    Tian, Wenyi
    Zhou, Han
    Deng, Weihua
    MATHEMATICS OF COMPUTATION, 2015, 84 (294) : 1703 - 1727
  • [36] A fourth order real-space algorithm for solving local Schrodinger equations
    Krotscheck, E
    Auer, J
    Chin, SA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (28): : 5459 - 5463
  • [37] RELATIVE LOGARITHMIC ORDER OF AN ENTIRE FUNCTION
    Ghosh, Chinmay
    Bandyopadhyay, Anirban
    Mondal, Soumen
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (01): : 105 - 120
  • [38] ON THE LOGARITHMIC ORDER OF ENTIRE DIRICHLET SERIES
    VAISH, SK
    SRIVASTAVA, GS
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1985, 16 (01): : 49 - 54
  • [39] On meromorphic functions with finite logarithmic order
    Chern, PTY
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (02) : 473 - 489
  • [40] CONSTRAINTS ON ORDER
    USZKOREIT, H
    LINGUISTICS, 1986, 24 (05) : 883 - 906