Solving order constraints in logarithmic space

被引:0
|
作者
Krokhin, A [1 ]
Larose, B
机构
[1] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
[2] Champlain Reg Coll, St Lambert, PQ J4P 3P2, Canada
[3] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
来源
STACS 2003, PROCEEDINGS | 2003年 / 2607卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We combine methods of order theory, finite model theory, and universal algebra to study, within the constraint satisfaction framework, the complexity of some well-known combinatorial problems connected with a finite poset. We identify some conditions on a poset which guarantee solvability of the problems in (deterministic, symmetric, or non-deterministic) logarithmic space. On the example of order constraints we study how a certain algebraic invariance property is related to solvability of a constraint satisfaction problem in non-deterministic logarithmic space.
引用
收藏
页码:379 / 390
页数:12
相关论文
共 50 条