A mitral annulus tracking approach for navigation of off-pump beating heart mitral valve repair

被引:11
|
作者
Li, Feng P. [1 ]
Rajchl, Martin [1 ]
Moore, John [1 ]
Peters, Terry M. [1 ]
机构
[1] Univ Western Ontario, Robarts Res Inst, Imaging Lab, London, ON N6A 5B7, Canada
基金
加拿大健康研究院;
关键词
beating heart mitral valve repair; image guidance; ultrasound; mitral annulus tracking; real-time; TRANSESOPHAGEAL ECHOCARDIOGRAPHY; ULTRASOUND; GUIDANCE; SEGMENTATION; SURGERY; REGISTRATION; REGURGITATION; IMPLANTATION; FLUOROSCOPY; FUSION;
D O I
10.1118/1.4904022
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To develop and validate a real-time mitral valve annulus (MVA) tracking approach based on biplane transesophageal echocardiogram (TEE) data and magnetic tracking systems (MTS) to be used in minimally invasive off-pump beating heart mitral valve repair (MVR). Methods: The authors' guidance system consists of three major components: TEE, magnetic tracking system, and an image guidance software platform. TEE provides real-time intraoperative images to show the cardiac motion and intracardiac surgical tools. The magnetic tracking system tracks the TEE probe and the surgical tools. The software platform integrates the TEE image planes and the virtual model of the tools and the MVA model on the screen. The authors' MVA tracking approach, which aims to update the MVA model in near real-time, comprises of three steps: image based gating, predictive reinitialization, and registration based MVA tracking. The image based gating step uses a small patch centered at each MVA point in the TEE images to identify images at optimal cardiac phases for updating the position of the MVA. The predictive reinitialization step uses the position and orientation of the TEE probe provided by the magnetic tracking system to predict the position of the MVA points in the TEE images and uses them for the initialization of the registration component. The registration based MVA tracking step aims to locate the MVA points in the images selected by the image based gating component by performing image based registration. Results: The validation of the MVA tracking approach was performed in a phantom study and a retrospective study on porcine data. In the phantom study, controlled translations were applied to the phantom and the tracked MVA was compared to its "true" position estimated based on a magnetic sensor attached to the phantom. The MVA tracking accuracy was 1.29 +/- 0.58 mm when the translation distance is about 1 cm, and increased to 2.85 +/- 1.19 mm when the translation distance is about 3 cm. In the study on porcine data, the authors compared the tracked MVA to a manually segmented MVA. The overall accuracy is 2.37 +/- 1.67 mm for single plane images and 2.35 +/- 1.55 mm for biplane images. The interoperator variation in manual segmentation was 2.32 +/- 1.24 mm for single plane images and 1.73 +/- 1.18 mm for biplane images. The computational efficiency of the algorithm on a desktop computer with an Intel (R) Xeon (R) CPU @3.47 GHz and an NVIDIA GeForce 690 graphic card is such that the time required for registering four MVA points was about 60 ms. Conclusions: The authors developed a rapid MVA tracking algorithm for use in the guidance of off-pump beating heart transapical mitral valve repair. This approach uses 2D biplane TEE images and was tested on a dynamic heart phantom and interventional porcine image data. Results regarding the accuracy and efficiency of the authors' MVA tracking algorithm are promising, and fulfill the requirements for surgical navigation. (C) 2015 American Association of Physicists in Medicine.
引用
收藏
页码:456 / 468
页数:13
相关论文
共 50 条
  • [41] Hybrid approach of percutaneous mitral valve repair with the MitraClip followed by off-pump coronary artery bypass grafting
    Bilge, Mehmet
    Ali, Sina
    Alsancak, Yakup
    Yasar, Ayse Saatci
    ANATOLIAN JOURNAL OF CARDIOLOGY, 2015, 15 (06): : 503 - 505
  • [42] Off-pump transapical mitral valve-in-ring implantation
    Zou, Yu
    Ferrari, Enrico
    von Segesser, Ludwig K.
    EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2013, 43 (04) : 849 - 855
  • [43] Development of Off-Pump Mitral Valve Replacement in a Porcine Model
    Gillespie, Matthew J.
    Aoki, Chikashi
    Takebayashi, Satoshi
    Shimaoka, Toru
    McGarvey, Jeremy R.
    Gorman, Robert C.
    Gorman, Joseph H., III
    ANNALS OF THORACIC SURGERY, 2015, 99 (04): : 1408 - 1412
  • [44] Combined off-pump mitral repair and thoracoscopic maze surgery
    Carnero-Alcazar, Manuel
    Cobiella-Carnicer, Javier
    Mahia-Casado, Patricia
    Carlos Maroto-Castellanos, Luis
    ASIAN CARDIOVASCULAR & THORACIC ANNALS, 2021, 29 (03): : 217 - 219
  • [45] Commentary: Off-pump mitral repair-Augmenting the future
    Baxter, Ronald D.
    Squiers, John J.
    DiMaio, J. Michael
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2019, 158 (04): : E137 - E137
  • [46] Robotic tissue tracking for beating heart mitral valve surgery
    Yuen, Shelten G.
    Vasilyev, Nikolay V.
    del Nido, Pedro J.
    Howe, Robert D.
    MEDICAL IMAGE ANALYSIS, 2013, 17 (08) : 1236 - 1242
  • [47] Beating Heart Mitral Valve Repair with Integrated Ultrasound Imaging
    McLeod, A. Jonathan
    Moore, John T.
    Peters, Terry M.
    MEDICAL IMAGING 2015: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2015, 9415
  • [48] Progressive design concepts in off-pump left ventricular remodeling mitral valve repair devices
    Yaffee, David W.
    Grossi, Eugene A.
    Ratcliffe, Mark B.
    ANNALS OF CARDIOTHORACIC SURGERY, 2015, 4 (04) : 352 - 354
  • [49] Serratus Anterior Plane Block for Transapical Off-Pump Mitral Valve Repair With NeoChord Implantation
    Bhatt, Himani V.
    Montgomery, Morgan L.
    Mittnacht, Alexander J. C.
    Shariat, Ali
    El-Eshmawi, Ahmed
    Adams, David H.
    Weiner, Menachem M.
    JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA, 2019, 33 (07) : 2105 - 2107
  • [50] Transapical Off-Pump Mitral Valve Repair With NeoChord Implantation - First 2 Cases in Japan -
    Yoshioka, Daisuke
    Shimamura, Kazuo
    Sengoku, Kaoruko
    Toda, Koichi
    Samura, Takaaki
    Miyagawa, Shigeru
    Sakata, Yasushi
    Sawa, Yoshiki
    CIRCULATION JOURNAL, 2020, 84 (11) : 2033 - 2033