Making the most of data: Quantum Monte Carlo postanalysis revisited

被引:1
|
作者
Ichibha, Tom [1 ]
Neufeld, Verena A. [2 ,3 ]
Hongo, Kenta [4 ]
Maezono, Ryo [1 ]
Thom, Alex J. W. [2 ]
机构
[1] JAIST, Sch Informat Sci, 1-1 Asahidai, Nomi, Ishikawa 9231292, Japan
[2] Univ Cambridge, Yusuf Hamied Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England
[3] Columbia Univ, Dept Chem, New York, NY 10027 USA
[4] JAIST, Res Ctr Adv Comp Infrastruct, 1-1 Asahidai, Nomi, Ishikawa 9231292, Japan
基金
英国工程与自然科学研究理事会;
关键词
STATISTICAL ERRORS; RANDOM-WALK; SIMULATION; SYSTEMS;
D O I
10.1103/PhysRevE.105.045313
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In quantum Monte Carlo (QMC) methods, energy estimators are calculated as (functions of) statistical averages of quantities sampled during a calculation. Associated statistical errors of these averages are often estimated. This error estimation is not straightforward and there are several choices of the error estimation methods. We evaluate the performance of three methods (the Straatsma method, an autoregressive model, and a blocking analysis based on von Neumann???s ratio test for randomness) for the energy time series given by three QMC methods [diffusion Monte Carlo, full configuration interaction Quantum Monte Carlo (FCIQMC), and coupled cluster Monte Carlo (CCMC)]. From these analyses, we describe a hybrid analysis method which provides reliable error estimates for a series of various lengths of FCIQMC and CCMC???s time series. Equally important is the estimation of the appropriate start point of the equilibrated phase. We establish that a simple mean squared error rule method as described by White [K. P. White, Jr., Simulation 69(6), 323 (1997)] can provide reasonable estimations.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Quantum Monte Carlo guided by quantum computing
    Jie Pan
    Nature Computational Science, 2022, 2 : 213 - 213
  • [32] Quantum Monte Carlo for lattice fermions
    Muramatsu, A
    QUANTUM MONTE CARLO METHODS IN PHYSICS AND CHEMISTRY, 1999, 525 : 343 - 373
  • [33] Fast quantum Monte Carlo on a GPU
    Lutsyshyn, Y.
    COMPUTER PHYSICS COMMUNICATIONS, 2015, 187 : 162 - 174
  • [34] From Monte Carlo to quantum computation
    Heinrich, S
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 62 (3-6) : 219 - 230
  • [35] Framework for solvation in quantum Monte Carlo
    Schwarz, Kathleen A.
    Sundararaman, Ravishankar
    Letchworth-Weaver, Kendra
    Arias, T. A.
    Hennig, Richard G.
    PHYSICAL REVIEW B, 2012, 85 (20):
  • [36] Positron chemistry by quantum Monte Carlo
    Mella, M
    Chiesa, S
    Bressanini, D
    Morosi, G
    NEW DIRECTIONS IN ANTIMATTER CHEMISTRY AND PHYSICS, 2001, : 235 - 262
  • [37] Quantum Monte Carlo calculations of nuclei
    Pandharipande, VR
    BATES 25: CELEBRATING 25 YEARS OF BEAM TO EXPERIMENT, 2000, 520 : 101 - 114
  • [38] Iterative Monte Carlo for quantum dynamics
    Jadhao, Vikram
    Makri, Nancy
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (16):
  • [39] Monte Carlo wavefunctions in quantum optics
    Molmer, K
    Castin, Y
    QUANTUM AND SEMICLASSICAL OPTICS, 1996, 8 (01): : 49 - 72
  • [40] Improving Reptation Quantum Monte Carlo
    Yuen, Wai Kong
    Oblinsky, Daniel G.
    Giacometti, Robert D.
    Rothstein, Stuart M.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2009, 109 (14) : 3229 - 3234