Making the most of data: Quantum Monte Carlo postanalysis revisited

被引:1
|
作者
Ichibha, Tom [1 ]
Neufeld, Verena A. [2 ,3 ]
Hongo, Kenta [4 ]
Maezono, Ryo [1 ]
Thom, Alex J. W. [2 ]
机构
[1] JAIST, Sch Informat Sci, 1-1 Asahidai, Nomi, Ishikawa 9231292, Japan
[2] Univ Cambridge, Yusuf Hamied Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England
[3] Columbia Univ, Dept Chem, New York, NY 10027 USA
[4] JAIST, Res Ctr Adv Comp Infrastruct, 1-1 Asahidai, Nomi, Ishikawa 9231292, Japan
基金
英国工程与自然科学研究理事会;
关键词
STATISTICAL ERRORS; RANDOM-WALK; SIMULATION; SYSTEMS;
D O I
10.1103/PhysRevE.105.045313
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In quantum Monte Carlo (QMC) methods, energy estimators are calculated as (functions of) statistical averages of quantities sampled during a calculation. Associated statistical errors of these averages are often estimated. This error estimation is not straightforward and there are several choices of the error estimation methods. We evaluate the performance of three methods (the Straatsma method, an autoregressive model, and a blocking analysis based on von Neumann???s ratio test for randomness) for the energy time series given by three QMC methods [diffusion Monte Carlo, full configuration interaction Quantum Monte Carlo (FCIQMC), and coupled cluster Monte Carlo (CCMC)]. From these analyses, we describe a hybrid analysis method which provides reliable error estimates for a series of various lengths of FCIQMC and CCMC???s time series. Equally important is the estimation of the appropriate start point of the equilibrated phase. We establish that a simple mean squared error rule method as described by White [K. P. White, Jr., Simulation 69(6), 323 (1997)] can provide reasonable estimations.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] The quantum Monte Carlo method
    Towler, M. D.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (11): : 2573 - 2598
  • [22] Quantum Monte Carlo methods
    Kawashima, N
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2002, (145): : 138 - 149
  • [23] Quantum Monte Carlo for catalysis
    Lester, William A., Jr.
    Zubarev, Dmitry Yu
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [24] Monte-Carlo Simulation Balancing Revisited
    Graf, Tobias
    Platzner, Marco
    2016 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG), 2016,
  • [25] LANCZOS-TYPE ALGORITHM FOR QUANTUM MONTE-CARLO DATA
    CAFFAREL, M
    GADEA, FX
    CEPERLEY, DM
    EUROPHYSICS LETTERS, 1991, 16 (03): : 249 - 254
  • [26] Neutron monitor generated data distributions in quantum variational Monte Carlo
    Kussainov, A. S.
    Pya, N.
    5TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2016), 2016, 738
  • [27] Analytic continuation of quantum Monte Carlo data by stochastic analytical inference
    Fuchs, Sebastian
    Pruschke, Thomas
    Jarrell, Mark
    PHYSICAL REVIEW E, 2010, 81 (05):
  • [28] Spectral properties from quantum Monte Carlo data: A consistent approach
    Preuss, R
    VonderLinden, W
    Hanke, W
    MAXIMUM ENTROPY AND BAYESIAN METHODS, 1996, 79 : 171 - 178
  • [29] Quantum Ice: A Quantum Monte Carlo Study
    Shannon, Nic
    Sikora, Olga
    Pollmann, Frank
    Penc, Karlo
    Fulde, Peter
    PHYSICAL REVIEW LETTERS, 2012, 108 (06)
  • [30] Quantum Monte Carlo guided by quantum computing
    Pan, Jie
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (04): : 213 - 213