Making the most of data: Quantum Monte Carlo postanalysis revisited

被引:1
|
作者
Ichibha, Tom [1 ]
Neufeld, Verena A. [2 ,3 ]
Hongo, Kenta [4 ]
Maezono, Ryo [1 ]
Thom, Alex J. W. [2 ]
机构
[1] JAIST, Sch Informat Sci, 1-1 Asahidai, Nomi, Ishikawa 9231292, Japan
[2] Univ Cambridge, Yusuf Hamied Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England
[3] Columbia Univ, Dept Chem, New York, NY 10027 USA
[4] JAIST, Res Ctr Adv Comp Infrastruct, 1-1 Asahidai, Nomi, Ishikawa 9231292, Japan
基金
英国工程与自然科学研究理事会;
关键词
STATISTICAL ERRORS; RANDOM-WALK; SIMULATION; SYSTEMS;
D O I
10.1103/PhysRevE.105.045313
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In quantum Monte Carlo (QMC) methods, energy estimators are calculated as (functions of) statistical averages of quantities sampled during a calculation. Associated statistical errors of these averages are often estimated. This error estimation is not straightforward and there are several choices of the error estimation methods. We evaluate the performance of three methods (the Straatsma method, an autoregressive model, and a blocking analysis based on von Neumann???s ratio test for randomness) for the energy time series given by three QMC methods [diffusion Monte Carlo, full configuration interaction Quantum Monte Carlo (FCIQMC), and coupled cluster Monte Carlo (CCMC)]. From these analyses, we describe a hybrid analysis method which provides reliable error estimates for a series of various lengths of FCIQMC and CCMC???s time series. Equally important is the estimation of the appropriate start point of the equilibrated phase. We establish that a simple mean squared error rule method as described by White [K. P. White, Jr., Simulation 69(6), 323 (1997)] can provide reasonable estimations.
引用
收藏
页数:14
相关论文
共 50 条
  • [2] Data analysis for quantum Monte Carlo simulations
    Neuber, DR
    Fischer, RO
    von der Linden, W
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2004, 735 : 245 - 251
  • [3] Quantum Monte Carlo simulations revisited: The case of anisotropic Heisenberg chains
    Androvitsaneas, P.
    Fytas, N. G.
    Paspalakis, E.
    Terzis, A. F.
    PHILOSOPHICAL MAGAZINE, 2012, 92 (36) : 4649 - 4656
  • [4] Conditional Monte Carlo revisited
    Lindqvist, Bo H.
    Erlemann, Rasmus
    Taraldsen, Gunnar
    SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (03) : 943 - 968
  • [5] The fermion Monte Carlo revisited
    Assaraf, Roland
    Caffarel, Michel
    Khelif, Anatole
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (06) : 1181 - 1214
  • [6] Quantum Monte Carlo
    Mitas, L
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 1997, 2 (06): : 696 - 700
  • [7] Electron-hole system revisited: A variational quantum Monte Carlo study
    Zhu, XJ
    Hybertsen, MS
    Littlewood, PB
    PHYSICAL REVIEW B, 1996, 54 (19): : 13575 - 13580
  • [8] Split Hamiltonian Monte Carlo revisited
    Fernando Casas
    Jesús María Sanz-Serna
    Luke Shaw
    Statistics and Computing, 2022, 32
  • [9] Split Hamiltonian Monte Carlo revisited
    Casas, Fernando
    Sanz-Serna, Jesus Maria
    Shaw, Luke
    STATISTICS AND COMPUTING, 2022, 32 (05)
  • [10] Replica Monte Carlo simulation (revisited)
    Wang, JS
    Swendsen, RH
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2005, (157): : 317 - 323