MOTION OF THE PENDULUM

被引:0
|
作者
Gnoth, Marian [1 ]
机构
[1] Philosopher Univ, Dept Math, Fac Nat Sci Constantine, Nitra 94974, Slovakia
关键词
D O I
暂无
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The article deals with the mathematical treatment of the motion of the planar mathematical pendulum. It concludes the differential equation and expresses the functional dependence T = T(phi(0)), where T is the period of oscillation and phi(0) is the amplitude of the oscillation. The derived result is valid on condition that the resistance of the environment is neglected.
引用
收藏
页码:155 / 167
页数:13
相关论文
共 50 条
  • [41] The Theory of Motion of a Double Mathematical Pendulum
    A. A. Martynyuk
    N. V. Nikitina
    International Applied Mechanics, 2000, 36 : 1252 - 1258
  • [42] Response to Pontoon and Pendulum Motion at Wave Energy Converter Based on Pendulum System
    Arief, I. S.
    Utama, I. K. A. P.
    Hantoro, R.
    Prananda, J.
    Safitri, Y.
    Rachmattra, T. A.
    Rindu, F. K.
    ASTECHNOVA 2017 INTERNATIONAL ENERGY CONFERENCE, 2018, 43
  • [43] CONTINUUM OF MOTION EQUATIONS AND CONTROL LAWS FOR THE INVERTED PENDULUM CART AND ROTARY PENDULUM
    Lare, Constance
    White, Warren N.
    PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE, DSCC2020, VOL 2, 2020,
  • [44] THEORETICAL AND EXPERIMENTAL STUDY OF MOTION OF SIMPLE PENDULUM
    FULCHER, LP
    DAVIS, BF
    AMERICAN JOURNAL OF PHYSICS, 1976, 44 (01) : 51 - 55
  • [45] EQUATION OF MOTION OF TORSION PENDULUM AND COMPLEX MODULUS
    TSCHOEGL, NW
    JOURNAL OF APPLIED PHYSICS, 1961, 32 (09) : 1794 - &
  • [46] CHAOTIC MOTION OF A PARAMETRICALLY FORCED SIMPLE PENDULUM
    YEH, JP
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1993, 30 (21) : 2953 - 2969
  • [47] THE TIME OF FRICTIONLESS MOTION OF A SWINGING COMPOUND PENDULUM
    SAMSON, A
    JOURNAL OF MECHANICAL DESIGN-TRANSACTIONS OF THE ASME, 1980, 102 (04): : 818 - 822
  • [48] ANALYSIS OF PENDULUM MOTION OF LARGE POWER UNIT
    ZOLLENKOPF, K
    ELEKTROTECHNISCHE ZEITSCHRIFT-ETZ, 1979, 100 (15): : 846 - 847
  • [49] Oscillatory–ballistic motion regularities of a gravitational pendulum
    Sebastian Micluța-Câmpeanu
    Tiberius O. Cheche
    Nonlinear Dynamics, 2017, 89 : 81 - 89
  • [50] On the motion of a pendulum with a moving support orbiting a circle
    AEJ - Alexandria Engineering Journal, 1995, 34 (02):