Oscillatory–ballistic motion regularities of a gravitational pendulum

被引:0
|
作者
Sebastian Micluța-Câmpeanu
Tiberius O. Cheche
机构
[1] University of Bucharest,Faculty of Physics
来源
Nonlinear Dynamics | 2017年 / 89卷
关键词
Gravitational pendulum; Velocity Verlet algorithm; Long time evolution; Band structure;
D O I
暂无
中图分类号
学科分类号
摘要
We simulate the motion of a gravitational pendulum that has initial angular amplitude larger than 90∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document} and smaller than 180∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}, and loses energy at each change from ballistic to oscillatory motion when the string is suddenly tensed (we name this event collision). Simulation is based on a velocity Verlet algorithm that is implemented in a numerical code. The numerical simulation of motion as function of time is checked against an analytical code that describes the trajectory. The string tension expression that respects the velocity Verlet algorithm requirements is identified and a criterion for collision occurrence is introduced. An interesting band-like structure of the number of collisions as function of the initial amplitude and damping modelling is obtained.
引用
收藏
页码:81 / 89
页数:8
相关论文
共 50 条