Oscillatory–ballistic motion regularities of a gravitational pendulum

被引:0
|
作者
Sebastian Micluța-Câmpeanu
Tiberius O. Cheche
机构
[1] University of Bucharest,Faculty of Physics
来源
Nonlinear Dynamics | 2017年 / 89卷
关键词
Gravitational pendulum; Velocity Verlet algorithm; Long time evolution; Band structure;
D O I
暂无
中图分类号
学科分类号
摘要
We simulate the motion of a gravitational pendulum that has initial angular amplitude larger than 90∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document} and smaller than 180∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}, and loses energy at each change from ballistic to oscillatory motion when the string is suddenly tensed (we name this event collision). Simulation is based on a velocity Verlet algorithm that is implemented in a numerical code. The numerical simulation of motion as function of time is checked against an analytical code that describes the trajectory. The string tension expression that respects the velocity Verlet algorithm requirements is identified and a criterion for collision occurrence is introduced. An interesting band-like structure of the number of collisions as function of the initial amplitude and damping modelling is obtained.
引用
收藏
页码:81 / 89
页数:8
相关论文
共 50 条
  • [21] Oscillatory states of quantum Kapitza pendulum
    He, Wei
    Liu, Chang -Yong
    ANNALS OF PHYSICS, 2023, 449
  • [22] Oscillatory orbits of the parametrically excited pendulum
    Garira, W
    Bishop, SR
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (10): : 2949 - 2958
  • [23] HOLLOW BALLISTIC PENDULUM FOR PLASMA MOMENTUM MEASUREMENTS
    GONCHAROV, SF
    PASHININ, PP
    PEROV, VY
    SEROV, RV
    YANOVSKY, VP
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1988, 59 (05): : 709 - 711
  • [24] Slow collisions in the ballistic pendulum: A computational study
    Donnelly, D
    Diamond, JB
    AMERICAN JOURNAL OF PHYSICS, 2003, 71 (06) : 535 - 540
  • [25] DETERMINATION OF PELLET VELOCITIES USING BALLISTIC PENDULUM
    DAMMERMANN, W
    PTB-MITTEILUNGEN, 1977, 87 (05): : 377 - 383
  • [26] The effects of projectile mass on ballistic pendulum displacement
    Sanders, James C.
    AMERICAN JOURNAL OF PHYSICS, 2020, 88 (05) : 360 - 364
  • [27] USE OF THE BALLISTIC PENDULUM FOR IMPACT TESTING OF TIRECORD
    LYONS, WJ
    PRETTYMAN, IB
    TEXTILE RESEARCH JOURNAL, 1953, 23 (12) : 917 - 925
  • [28] The auto-ballistic astronomic pendulum.
    Guillet, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1920, 170 : 1310 - 1313
  • [29] Experimental Study of the Oscillatory Motion of a Heavy Pendulum by an Analog Distance Sensor with the Micro-lab Board
    Machichi, S.
    Elamri, F. Z.
    El Malki, M.
    Falyouni, F.
    Ouariach, A.
    Bousseta, R.
    Achouch, S.
    El ElRhaleb
    Bria, D.
    ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 2, ICSMAI 2024, 2024, 12 : 51 - 57
  • [30] Bouncing in an oscillatory gravitational field
    Martin, J. L.
    Strange, P.
    EUROPEAN JOURNAL OF PHYSICS, 2021, 42 (04)