TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data

被引:2420
|
作者
Colaprico, Antonio [1 ,2 ]
Silva, Tiago C. [3 ,4 ]
Olsen, Catharina [1 ,2 ]
Garofano, Luciano [5 ,6 ]
Cava, Claudia [7 ]
Garolini, Davide [8 ]
Sabedot, Thais S. [3 ,4 ]
Malta, Tathiane M. [3 ,4 ]
Pagnotta, Stefano M. [5 ,9 ]
Castiglioni, Isabella
Ceccarelli, Michele [10 ]
Bontempi, Gianluca [1 ,2 ]
Noushmehr, Houtan [3 ,4 ]
机构
[1] Interuniv Inst Bioinformat Brussels, Brussels, Belgium
[2] Univ Libre Bruxelles, Dept Informat, Machine Learning Grp, Brussels, Belgium
[3] Univ Sao Paulo, Ribeirao Preto Med Sch, Dept Genet, Sao Paulo, Brazil
[4] NAP USP, Ctr Integrat Syst Biol CISBi, Sao Paulo, Brazil
[5] Univ Sannio, Dept Sci & Technol, Benevento, Italy
[6] Unltd Software Srl, Naples, Italy
[7] Natl Res Council IBFM CNR, Inst Mol Bioimaging & Physiol, Milan, Italy
[8] Univ Turin, Dept Phys, Phys Complex Syst, I-10124 Turin, Italy
[9] BIOGEM, Bioinformat Lab, Avellino, Italy
[10] HBKU, Qatar Comp Res Inst, Doha, Qatar
基金
巴西圣保罗研究基金会;
关键词
SOMATIC GENOMIC LANDSCAPE; CANCER GENOMICS; BIOCONDUCTOR; SOFTWARE;
D O I
10.1093/nar/gkv1507
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Cancer Genome Atlas (TCGA) research network has made public a large collection of clinical and molecular phenotypes of more than 10 000 tumor patients across 33 different tumor types. Using this cohort, TCGA has published over 20 marker papers detailing the genomic and epigenomic alterations associated with these tumor types. Although many important discoveries have been made by TCGA's research network, opportunities still exist to implement novel methods, thereby elucidating new biological pathways and diagnostic markers. However, mining the TCGA data presents several bioinformatics challenges, such as data retrieval and integration with clinical data and other molecular data types (e.g. RNA and DNA methylation). We developed an R/Bioconductor package called TCGAbiolinks to address these challenges and offer bioinformatics solutions by using a guided workflow to allow users to query, download and perform integrative analyses of TCGA data. We combined methods from computer science and statistics into the pipeline and incorporated methodologies developed in previous TCGA marker studies and in our own group. Using four different TCGA tumor types (Kidney, Brain, Breast and Colon) as examples, we provide case studies to illustrate examples of reproducibility, integrative analysis and utilization of different Bioconductor packages to advance and accelerate novel discoveries.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] GeneTonic: an R/Bioconductor package for streamlining the interpretation of RNA-seq data
    Federico Marini
    Annekathrin Ludt
    Jan Linke
    Konstantin Strauch
    BMC Bioinformatics, 22
  • [42] A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package
    Meng, Jia
    Lu, Zhiliang
    Liu, Hui
    Zhang, Lin
    Zhang, Shaowu
    Chen, Yidong
    Rao, Manjeet K.
    Huang, Yufei
    METHODS, 2014, 69 (03) : 274 - 281
  • [43] Integrative analysis of methylation and gene expression data in TCGA
    Liu, Yihua
    Qiu, Peng
    2012 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS), 2012, : 1 - 4
  • [44] Pathview: an R/Bioconductor package for pathway-based data integration and visualization
    Luo, Weijun
    Brouwer, Cory
    BIOINFORMATICS, 2013, 29 (14) : 1830 - 1831
  • [45] karyoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data
    Gel, Bernat
    Serra, Eduard
    BIOINFORMATICS, 2017, 33 (19) : 3088 - 3090
  • [46] spatialLIBD: an R/Bioconductor package to visualize spatially-resolved transcriptomics data
    Brenda Pardo
    Abby Spangler
    Lukas M. Weber
    Stephanie C. Page
    Stephanie C. Hicks
    Andrew E. Jaffe
    Keri Martinowich
    Kristen R. Maynard
    Leonardo Collado-Torres
    BMC Genomics, 23
  • [47] spatialLIBD: an R/Bioconductor package to visualize spatially-resolved transcriptomics data
    Pardo, Brenda
    Spangler, Abby
    Weber, Lukas M.
    Page, Stephanie C.
    Hicks, Stephanie C.
    Jaffe, Andrew E.
    Martinowich, Keri
    Maynard, Kristen R.
    Collado-Torres, Leonardo
    BMC GENOMICS, 2022, 23 (01)
  • [48] GeneTonic: an R/Bioconductor package for streamlining the interpretation of RNA-seq data
    Marini, Federico
    Ludt, Annekathrin
    Linke, Jan
    Strauch, Konstantin
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [49] NanoMethViz: An R/Bioconductor package for visualizing long-read methylation data
    Su, Shian
    Gouil, Quentin
    Blewitt, Marnie E.
    Cook, Dianne
    Hickey, Peter F.
    Ritchie, Matthew E.
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (10)
  • [50] psygenet2r: a R/Bioconductor package for the analysis of psychiatric disease genes
    Gutierrez-Sacristan, Alba
    Hernandez-Ferrer, Carles
    Gonzalez, Juan R.
    Furlong, Laura I.
    BIOINFORMATICS, 2017, 33 (24) : 4004 - 4006