TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data

被引:2420
|
作者
Colaprico, Antonio [1 ,2 ]
Silva, Tiago C. [3 ,4 ]
Olsen, Catharina [1 ,2 ]
Garofano, Luciano [5 ,6 ]
Cava, Claudia [7 ]
Garolini, Davide [8 ]
Sabedot, Thais S. [3 ,4 ]
Malta, Tathiane M. [3 ,4 ]
Pagnotta, Stefano M. [5 ,9 ]
Castiglioni, Isabella
Ceccarelli, Michele [10 ]
Bontempi, Gianluca [1 ,2 ]
Noushmehr, Houtan [3 ,4 ]
机构
[1] Interuniv Inst Bioinformat Brussels, Brussels, Belgium
[2] Univ Libre Bruxelles, Dept Informat, Machine Learning Grp, Brussels, Belgium
[3] Univ Sao Paulo, Ribeirao Preto Med Sch, Dept Genet, Sao Paulo, Brazil
[4] NAP USP, Ctr Integrat Syst Biol CISBi, Sao Paulo, Brazil
[5] Univ Sannio, Dept Sci & Technol, Benevento, Italy
[6] Unltd Software Srl, Naples, Italy
[7] Natl Res Council IBFM CNR, Inst Mol Bioimaging & Physiol, Milan, Italy
[8] Univ Turin, Dept Phys, Phys Complex Syst, I-10124 Turin, Italy
[9] BIOGEM, Bioinformat Lab, Avellino, Italy
[10] HBKU, Qatar Comp Res Inst, Doha, Qatar
基金
巴西圣保罗研究基金会;
关键词
SOMATIC GENOMIC LANDSCAPE; CANCER GENOMICS; BIOCONDUCTOR; SOFTWARE;
D O I
10.1093/nar/gkv1507
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Cancer Genome Atlas (TCGA) research network has made public a large collection of clinical and molecular phenotypes of more than 10 000 tumor patients across 33 different tumor types. Using this cohort, TCGA has published over 20 marker papers detailing the genomic and epigenomic alterations associated with these tumor types. Although many important discoveries have been made by TCGA's research network, opportunities still exist to implement novel methods, thereby elucidating new biological pathways and diagnostic markers. However, mining the TCGA data presents several bioinformatics challenges, such as data retrieval and integration with clinical data and other molecular data types (e.g. RNA and DNA methylation). We developed an R/Bioconductor package called TCGAbiolinks to address these challenges and offer bioinformatics solutions by using a guided workflow to allow users to query, download and perform integrative analyses of TCGA data. We combined methods from computer science and statistics into the pipeline and incorporated methodologies developed in previous TCGA marker studies and in our own group. Using four different TCGA tumor types (Kidney, Brain, Breast and Colon) as examples, we provide case studies to illustrate examples of reproducibility, integrative analysis and utilization of different Bioconductor packages to advance and accelerate novel discoveries.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis
    Yu, Guangchuang
    Wang, Li-Gen
    Yan, Guang-Rong
    He, Qing-Yu
    BIOINFORMATICS, 2015, 31 (04) : 608 - 609
  • [32] supraHex: An R/Bioconductor package for tabular omics data analysis using a supra-hexagonal map
    Fang, Hai
    Gough, Julian
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2014, 443 (01) : 285 - 289
  • [33] Using R and Bioconductor for proteomics data analysis
    Gatto, Laurent
    Christoforou, Andy
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2014, 1844 (01): : 42 - 51
  • [34] HilbertCurve: an R/Bioconductor package for high-resolution visualization of genomic data
    Gu, Zuguang
    Eils, Roland
    Schlesner, Matthias
    BIOINFORMATICS, 2016, 32 (15) : 2372 - 2374
  • [35] Integrative analysis of TCGA pancreatic ductal adenocarcinoma data
    Mishra, Nitish K.
    Southekal, Siddesh
    Guda, Chittibabu
    CANCER RESEARCH, 2019, 79 (13)
  • [36] A Bayesian Graphical Model for Integrative Analysis of TCGA Data
    Xu, Yanxun
    Zhang, Jie
    Yuan, Yuan
    Mitra, Riten
    Mueller, Peter
    Ji, Yuan
    2012 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS), 2012, : 135 - 138
  • [37] TFBSTools: an R/bioconductor package for transcription factor binding site analysis
    Tan, Ge
    Lenhard, Boris
    BIOINFORMATICS, 2016, 32 (10) : 1555 - 1556
  • [38] DChIPRep, an R/Bioconductor package for differential enrichment analysis in chromatin studies
    Chabbert, Christophe D.
    Steinmetz, Lars M.
    Klaus, Bernd
    PEERJ, 2016, 4
  • [39] Assessing the quality of comparative genomics data and results with the cogeqc R/Bioconductor package
    Almeida-Silva, Fabricio
    Van de Peer, Yves
    METHODS IN ECOLOGY AND EVOLUTION, 2023, 14 (12): : 2942 - 2952
  • [40] CTCF: an R/bioconductor data package of human and mouse CTCF binding sites
    Dozmorov, Mikhail G.
    Mu, Wancen
    Davis, Eric S.
    Lee, Stuart
    Triche, Timothy J.
    Phanstiel, Douglas H.
    Love, Michael, I
    BIOINFORMATICS ADVANCES, 2022, 2 (01):