Input Agnostic Deep Learning for Alzheimer's Disease Classification Using Multimodal MRI Images

被引:8
|
作者
Massalimova, Aidana [1 ]
Varol, Huseyin Atakan [1 ]
机构
[1] Nazarbayev Univ, Inst Smart Syst & Artificial Intelligence, 53 Kabanbay Batyr Ave, Nur Sultan City 010000, Kazakhstan
关键词
DIAGNOSIS;
D O I
10.1109/EMBC46164.2021.9629807
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Alzheimer's disease (AD) is a progressive brain disorder that causes memory and functional impairments. The advances in machine learning and publicly available medical datasets initiated multiple studies in AD diagnosis. In this work, we utilize a multi-modal deep learning approach in classifying normal cognition, mild cognitive impairment and AD classes on the basis of structural MRI and diffusion tensor imaging (DTI) scans from the OASIS-3 dataset. In addition to a conventional multi-modal network, we also present an input agnostic architecture that allows diagnosis with either sMRI or DTI scan, which distinguishes our method from previous multi-modal machine learning-based methods. The results show that the input agnostic model achieves 0.96 accuracy when both structural MRI and DTI scans are provided as inputs.
引用
收藏
页码:2875 / 2878
页数:4
相关论文
共 50 条
  • [31] Improved Alzheimer's Disease Detection by MRI Using Multimodal Machine Learning Algorithms
    Battineni, Gopi
    Hossain, Mohmmad Amran
    Chintalapudi, Nalini
    Traini, Enea
    Dhulipalla, Venkata Rao
    Ramasamy, Mariappan
    Amenta, Francesco
    DIAGNOSTICS, 2021, 11 (11)
  • [32] Multimodal deep learning for Alzheimer's disease dementia assessment
    Qiu, Shangran
    Miller, Matthew, I
    Joshi, Prajakta S.
    Lee, Joyce C.
    Xue, Chonghua
    Ni, Yunruo
    Wang, Yuwei
    De Anda-Duran, Ileana
    Hwang, Phillip H.
    Cramer, Justin A.
    Dwyer, Brigid C.
    Hao, Honglin
    Kaku, Michelle C.
    Kedar, Sachin
    Lee, Peter H.
    Mian, Asim Z.
    Murman, Daniel L.
    O'Shea, Sarah
    Paul, Aaron B.
    Saint-Hilaire, Marie-Helene
    Sartor, E. Alton
    Saxena, Aneeta R.
    Shih, Ludy C.
    Small, Juan E.
    Smith, Maximilian J.
    Swaminathan, Arun
    Takahashi, Courtney E.
    Taraschenko, Olga
    You, Hui
    Yuan, Jing
    Zhou, Yan
    Zhu, Shuhan
    Alosco, Michael L.
    Mez, Jesse
    Stein, Thor D.
    Poston, Kathleen L.
    Au, Rhoda
    Kolachalama, Vijaya B.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [33] Multimodal deep learning for Alzheimer’s disease dementia assessment
    Shangran Qiu
    Matthew I. Miller
    Prajakta S. Joshi
    Joyce C. Lee
    Chonghua Xue
    Yunruo Ni
    Yuwei Wang
    Ileana De Anda-Duran
    Phillip H. Hwang
    Justin A. Cramer
    Brigid C. Dwyer
    Honglin Hao
    Michelle C. Kaku
    Sachin Kedar
    Peter H. Lee
    Asim Z. Mian
    Daniel L. Murman
    Sarah O’Shea
    Aaron B. Paul
    Marie-Helene Saint-Hilaire
    E. Alton Sartor
    Aneeta R. Saxena
    Ludy C. Shih
    Juan E. Small
    Maximilian J. Smith
    Arun Swaminathan
    Courtney E. Takahashi
    Olga Taraschenko
    Hui You
    Jing Yuan
    Yan Zhou
    Shuhan Zhu
    Michael L. Alosco
    Jesse Mez
    Thor D. Stein
    Kathleen L. Poston
    Rhoda Au
    Vijaya B. Kolachalama
    Nature Communications, 13
  • [34] Classification of Mild Cognitive Impairment and Alzheimer's Disease from Magnetic Resonance Images using Deep Learning
    Raju, Manu
    Sudila, T., V
    Gopi, Varun P.
    Anitha, V. S.
    2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS ON ELECTRONICS, INFORMATION, COMMUNICATION & TECHNOLOGY (RTEICT-2020), 2020, : 52 - 57
  • [35] Classification of Alzheimer's disease in MRI images using knowledge distillation framework: an investigation
    Li, Yiru
    Luo, Jianxu
    Zhang, Jiachen
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2022, 17 (07) : 1235 - 1243
  • [36] Classification of Alzheimer’s disease in MRI images using knowledge distillation framework: an investigation
    Yiru Li
    Jianxu Luo
    Jiachen Zhang
    International Journal of Computer Assisted Radiology and Surgery, 2022, 17 : 1235 - 1243
  • [37] Deep Learning Based Neural Network for Six-Class-Classification of Alzheimer's Disease Stages Based on MRI Images
    Roerup, Tim
    Rojas, I
    Pomares, H.
    Gloesekoetter, P.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 15 - 23
  • [38] Deep ensemble learning for Alzheimer's disease classification
    An, Ning
    Ding, Huitong
    Yang, Jiaoyun
    Au, Rhoda
    Ang, Ting F. A.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2020, 105
  • [39] Deep structural learning for classification of Alzheimer's disease
    Oishi, N.
    Fukuyama, H.
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2017, 381 : 811 - 811
  • [40] Prediction of conversion to Alzheimer's disease using deep survival analysis of MRI images
    Nakagawa, Tomonori
    Ishida, Manabu
    Naito, Junpei
    Nagai, Atsushi
    Yamaguchi, Shuhei
    Onoda, Keiichi
    BRAIN COMMUNICATIONS, 2020, 2 (01)