Input Agnostic Deep Learning for Alzheimer's Disease Classification Using Multimodal MRI Images

被引:8
|
作者
Massalimova, Aidana [1 ]
Varol, Huseyin Atakan [1 ]
机构
[1] Nazarbayev Univ, Inst Smart Syst & Artificial Intelligence, 53 Kabanbay Batyr Ave, Nur Sultan City 010000, Kazakhstan
关键词
DIAGNOSIS;
D O I
10.1109/EMBC46164.2021.9629807
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Alzheimer's disease (AD) is a progressive brain disorder that causes memory and functional impairments. The advances in machine learning and publicly available medical datasets initiated multiple studies in AD diagnosis. In this work, we utilize a multi-modal deep learning approach in classifying normal cognition, mild cognitive impairment and AD classes on the basis of structural MRI and diffusion tensor imaging (DTI) scans from the OASIS-3 dataset. In addition to a conventional multi-modal network, we also present an input agnostic architecture that allows diagnosis with either sMRI or DTI scan, which distinguishes our method from previous multi-modal machine learning-based methods. The results show that the input agnostic model achieves 0.96 accuracy when both structural MRI and DTI scans are provided as inputs.
引用
收藏
页码:2875 / 2878
页数:4
相关论文
共 50 条
  • [21] Automated Classification of Alzheimer's Disease Using MRI and Transfer Learning
    Kumar, S. Sambath
    Nandhini, M.
    MOBILE COMPUTING AND SUSTAINABLE INFORMATICS, 2022, 68 : 663 - 686
  • [22] MRI Segmentation and Classification of Human Brain Using Deep Learning for Diagnosis of Alzheimer's Disease: A Survey
    Yamanakkanavar, Nagaraj
    Choi, Jae Young
    Lee, Bumshik
    SENSORS, 2020, 20 (11) : 1 - 31
  • [23] Deep Learning Augmented with SMOTE for Timely Alzheimer's Disease Detection in MRI Images
    Gayathri, P.
    Geetha, N.
    Sridhar, M.
    Kuchipudi, Ramu
    Babu, K. Suresh
    Maguluri, Lakshmana Phaneendra
    Bala, B. Kiran
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (02) : 499 - 508
  • [24] Comparative evaluation of deep transfer learning with learning-from-scratch for Alzheimer disease MRI images Classification
    Tiwari, Anuj
    Dhavamani, Sugasini
    Patel, Tushar
    Ramasamy, Jagadeesh
    Gesing, Sandra
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2023, 299 (03) : S218 - S218
  • [25] Deep Learning for Alzheimer's Disease Classification using Texture Features
    So, Jae-Hong
    Madusanka, Nuwan
    Choi, Heung-Kook
    Choi, Boo-Kyeong
    Park, Hyeon-Gyun
    CURRENT MEDICAL IMAGING, 2019, 15 (07) : 689 - 698
  • [26] Alzheimer?s disease diagnosis and classification using deep learning techniques
    Al Shehri, Waleed
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [27] Alzheimer’s disease diagnosis and classification using deep learning techniques
    Al Shehri W.
    PeerJ Computer Science, 2022, 8
  • [28] MULTI-SLICE MRI CLASSIFICATION FOR ALZHEIMER'S DISEASE DIAGNOSIS WITH DEEP LEARNING
    Chen, Yang
    Lu, Siyao
    Zhang, Heng
    Zhang, Teng-teng
    Li, Xueping
    Xu, Caixu
    Gong, Zhipeng
    Gong, Haixiao
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2025, 25 (02)
  • [29] A Deep Learning-Based Ensemble Method for Early Diagnosis of Alzheimer’s Disease using MRI Images
    Sina Fathi
    Ali Ahmadi
    Afsaneh Dehnad
    Mostafa Almasi-Dooghaee
    Melika Sadegh
    Neuroinformatics, 2024, 22 : 89 - 105
  • [30] A Deep Learning-Based Ensemble Method for Early Diagnosis of Alzheimer's Disease using MRI Images
    Fathi, Sina
    Ahmadi, Ali
    Dehnad, Afsaneh
    Almasi-Dooghaee, Mostafa
    Sadegh, Melika
    NEUROINFORMATICS, 2024, 22 (01) : 89 - 105