Input Agnostic Deep Learning for Alzheimer's Disease Classification Using Multimodal MRI Images

被引:8
|
作者
Massalimova, Aidana [1 ]
Varol, Huseyin Atakan [1 ]
机构
[1] Nazarbayev Univ, Inst Smart Syst & Artificial Intelligence, 53 Kabanbay Batyr Ave, Nur Sultan City 010000, Kazakhstan
关键词
DIAGNOSIS;
D O I
10.1109/EMBC46164.2021.9629807
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Alzheimer's disease (AD) is a progressive brain disorder that causes memory and functional impairments. The advances in machine learning and publicly available medical datasets initiated multiple studies in AD diagnosis. In this work, we utilize a multi-modal deep learning approach in classifying normal cognition, mild cognitive impairment and AD classes on the basis of structural MRI and diffusion tensor imaging (DTI) scans from the OASIS-3 dataset. In addition to a conventional multi-modal network, we also present an input agnostic architecture that allows diagnosis with either sMRI or DTI scan, which distinguishes our method from previous multi-modal machine learning-based methods. The results show that the input agnostic model achieves 0.96 accuracy when both structural MRI and DTI scans are provided as inputs.
引用
收藏
页码:2875 / 2878
页数:4
相关论文
共 50 条
  • [1] Explainable Deep-Learning-Based Diagnosis of Alzheimer’s Disease Using Multimodal Input Fusion of PET and MRI Images
    Modupe Odusami
    Rytis Maskeliūnas
    Robertas Damaševičius
    Sanjay Misra
    Journal of Medical and Biological Engineering, 2023, 43 : 291 - 302
  • [2] Explainable Deep-Learning-Based Diagnosis of Alzheimer's Disease Using Multimodal Input Fusion of PET and MRI Images
    Odusami, Modupe
    Maskeliunas, Rytis
    Damasevicius, Robertas
    Misra, Sanjay
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2023, 43 (03) : 291 - 302
  • [3] Deep Learning Based Binary Classification for Alzheimer's Disease Detection using Brain MRI Images
    Hussain, Emtiaz
    Hasan, Mahmudul
    Hassan, Syed Zafrul
    Azmi, Tanzina Hassan
    Rahman, Md Anisur
    Parvez, Mohammad Zavid
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 1115 - 1120
  • [4] Prediction Alzheimer's disease from MRI images using deep learning
    Mggdadi, Esraa
    Al-Aiad, Ahmad
    Al-Ayyad, Muhammad Saleh
    Darabseh, Alaa
    2021 12TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2021, : 120 - 125
  • [5] Alzheimer's Disease MRI Classification using EfficientNet: A Deep Learning Model
    Aborokbah, Majed
    2024 4TH INTERNATIONAL CONFERENCE ON APPLIED ARTIFICIAL INTELLIGENCE, ICAPAI, 2024, : 8 - 15
  • [6] Classification of Alzheimer's Disease Based on Deep Learning Using Medical Images
    Vega-Huerta, Hugo
    Pantoja-Pimentel, Kevin Renzo
    Jaimes, Sebastian Yimmy Quintanilla-
    Maquen-Nino, Gisella Luisa Elena
    De-La-Cruz-VdV, Percy
    Guerra-Grados, Luis
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (10) : 101 - 114
  • [7] A transfer learning approach for multiclass classification of Alzheimer's disease using MRI images
    Khan, Rizwan
    Akbar, Saeed
    Mehmood, Atif
    Shahid, Farah
    Munir, Khushboo
    Ilyas, Naveed
    Asif, M.
    Zheng, Zhonglong
    FRONTIERS IN NEUROSCIENCE, 2023, 16
  • [8] Classification of Alzheimer's Disease from Cranial MRI Images Using Transfer Learning
    Ella, Christian Immanuel C.
    Magboo, Ma Sheila A.
    Magboo, Vincent Peter C.
    2023 IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLIED NETWORK TECHNOLOGIES, ICMLANT, 2023, : 127 - 132
  • [9] Classification of Alzheimer's disease using MRI data based on Deep Learning Techniques
    Sorour, Shaymaa E.
    El-Mageed, Amr A. Abd
    Albarrak, Khalied M.
    Alnaim, Abdulrahman K.
    Wafa, Abeer A.
    El-Shafeiy, Engy
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (02)
  • [10] Classification and analysis of Alzheimer's Disease using Deep Learning methods on MRI and PET
    Antony, Febin
    Anita, H. B.
    2022 5TH INTERNATIONAL CONFERENCE ON MULTIMEDIA, SIGNAL PROCESSING AND COMMUNICATION TECHNOLOGIES (IMPACT), 2022,