Short-Term Load Forecasting Based on PSO-KFCM Daily Load Curve Clustering and CNN-LSTM Model

被引:38
|
作者
Shang, Chuan [1 ,2 ]
Gao, Junwei [1 ,2 ]
Liu, Huabo [1 ,2 ]
Liu, Fuzheng [1 ,2 ]
机构
[1] Qingdao Univ, Coll Automat, Qingdao 266071, Peoples R China
[2] Shandong Key Lab Ind Control Technol, Qingdao 266071, Peoples R China
关键词
Load modeling; Load forecasting; Predictive models; Prediction algorithms; Kernel; Data models; Clustering algorithms; Short-term load forecasting; Pearson correlation coefficient; PSO-KFCM; cosine similarity; CNN; LSTM;
D O I
10.1109/ACCESS.2021.3067043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Short-term load forecasting (STLF) with excellent precision and prominent efficiency plays a significant role in the stable operation of power grid and the improvement of economic benefits. In this paper, a novel model based on data mining and deep learning is proposed. Firstly, the preprocessing of data includes normalization of historical load, and fuzzification of influencing factors (meteorological factors, date types and economy) based on Pearson correlation coefficient (PCC). Secondly, kernel fuzzy c-means (KFCM) modified by particle swarm optimization (PSO-KFCM) algorithm clusters the daily load curve. In the clustering experiments, the within-cluster sum of squared error (SSE) index is presented to determine the number of clusters and the clustering validity has a 31.9% enhancement compared with the traditional FCM algorithm. Thirdly, the cosine similarity establishes the resemblance between the prediction date and each cluster, and the similar cluster is determined according to the principle of maximum similarity. Finally, a multivariate and multi-step hybrid model MMCNN-LSTM based on convolution neural network (CNN) and long short-term memory (LSTM) neural network is proposed to forecast the load in following 24 hours, in which similar cluster data is applied to training set. To demonstrate the effectiveness of proposed integrated technique, the accuracy has been verified in three predictive experiments. The fruitful results indicated that the average mean absolute percent error (MAPE) in the entire test set was only 1.34%, a 3.02% reduction compared to a single LSTM.
引用
收藏
页码:50344 / 50357
页数:14
相关论文
共 50 条
  • [31] Historical load curve correction for short-term load forecasting
    Yang, Jingfei
    Stenzel, Juergen
    IPEC: 2005 INTERNATIONAL POWER ENGINEERING CONFERENCE, VOLS 1 AND 2, 2005, : 35 - 40
  • [32] A load curve based fuzzy modeling technique for short-term load forecasting
    Papadakis, SE
    Theocharis, JB
    Bakirtzis, AG
    FUZZY SETS AND SYSTEMS, 2003, 135 (02) : 279 - 303
  • [33] Short-term power load forecasting using SSA-CNN-LSTM method
    Wang, Yonggang
    Hao, Yue
    Zhang, Biying
    Zhang, Nannan
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [34] Domain Fusion CNN-LSTM for Short-Term Power Consumption Forecasting
    Shao, Xiaorui
    Pu, Chen
    Zhang, Yuxin
    Kim, Chang Soo
    IEEE ACCESS, 2020, 8 : 188352 - 188362
  • [35] CNN-LSTM MODELS COMBINED WITH ATTENTION MECHANISM FOR SHORT-TERM BUILDING HEATING LOAD PREDICTION
    Lan, Kun
    Xin, Xin
    Fang, Songlin
    Cao, Pangong
    JOURNAL OF GREEN BUILDING, 2023, 18 (04): : 37 - 56
  • [36] Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations
    Zang, Haixiang
    Liu, Ling
    Sun, Li
    Cheng, Lilin
    Wei, Zhinong
    Sun, Guoqiang
    RENEWABLE ENERGY, 2020, 160 : 26 - 41
  • [37] Short-Term Crack in Sewer Forecasting Method Based on CNN-LSTM Hybrid Neural Network Model
    Jang, Seung-Ju
    Jang, Seung-Yup
    JOURNAL OF THE KOREAN GEOSYNTHETIC SOCIETY, 2022, 21 (02): : 11 - 19
  • [38] Research on optimization of improved short-term load composite forecasting model based on AM-CNN-Bi-LSTM
    Zhao, Xueyuan
    Ying, Xiaoyu
    Ge, Jian
    Xu, Tingting
    Qian, Fanyue
    Tan, Yang
    Dai, Xujun
    Gao, Weijun
    AIP ADVANCES, 2024, 14 (05)
  • [39] An optimised LSTM algorithm for short-term load forecasting
    Zhang Z.
    Li Z.
    Yan L.
    International Journal of Information and Communication Technology, 2023, 22 (03) : 224 - 239
  • [40] Short-Term Load Forecasting of Microgrid Based on TVFEMD-LSTM-ARMAX Model
    Yufeng Yin
    Wenbo Wang
    Min Yu
    Transactions on Electrical and Electronic Materials, 2024, 25 : 265 - 279