Short-Term Load Forecasting Based on PSO-KFCM Daily Load Curve Clustering and CNN-LSTM Model

被引:38
|
作者
Shang, Chuan [1 ,2 ]
Gao, Junwei [1 ,2 ]
Liu, Huabo [1 ,2 ]
Liu, Fuzheng [1 ,2 ]
机构
[1] Qingdao Univ, Coll Automat, Qingdao 266071, Peoples R China
[2] Shandong Key Lab Ind Control Technol, Qingdao 266071, Peoples R China
关键词
Load modeling; Load forecasting; Predictive models; Prediction algorithms; Kernel; Data models; Clustering algorithms; Short-term load forecasting; Pearson correlation coefficient; PSO-KFCM; cosine similarity; CNN; LSTM;
D O I
10.1109/ACCESS.2021.3067043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Short-term load forecasting (STLF) with excellent precision and prominent efficiency plays a significant role in the stable operation of power grid and the improvement of economic benefits. In this paper, a novel model based on data mining and deep learning is proposed. Firstly, the preprocessing of data includes normalization of historical load, and fuzzification of influencing factors (meteorological factors, date types and economy) based on Pearson correlation coefficient (PCC). Secondly, kernel fuzzy c-means (KFCM) modified by particle swarm optimization (PSO-KFCM) algorithm clusters the daily load curve. In the clustering experiments, the within-cluster sum of squared error (SSE) index is presented to determine the number of clusters and the clustering validity has a 31.9% enhancement compared with the traditional FCM algorithm. Thirdly, the cosine similarity establishes the resemblance between the prediction date and each cluster, and the similar cluster is determined according to the principle of maximum similarity. Finally, a multivariate and multi-step hybrid model MMCNN-LSTM based on convolution neural network (CNN) and long short-term memory (LSTM) neural network is proposed to forecast the load in following 24 hours, in which similar cluster data is applied to training set. To demonstrate the effectiveness of proposed integrated technique, the accuracy has been verified in three predictive experiments. The fruitful results indicated that the average mean absolute percent error (MAPE) in the entire test set was only 1.34%, a 3.02% reduction compared to a single LSTM.
引用
收藏
页码:50344 / 50357
页数:14
相关论文
共 50 条
  • [21] A Short-Term Load Forecasting Method Using Integrated CNN and LSTM Network
    Rafi, Shafiul Hasan
    Nahid-Al-Masood
    Deeba, Shohana Rahman
    Hossain, Eklas
    IEEE ACCESS, 2021, 9 : 32436 - 32448
  • [22] Load Forecasting Based on Short-term Correlation Clustering
    Tao, Shun
    Li, Yongtong
    Xiao, Xiangning
    Yao, Liting
    2017 IEEE INNOVATIVE SMART GRID TECHNOLOGIES - ASIA (ISGT-ASIA), 2017, : 583 - 589
  • [23] Study on short-term load forecasting method based on the PSO and SVM model
    Jiang, Dao
    International Journal of Control and Automation, 2015, 8 (08): : 181 - 188
  • [24] Short-Term Power Load Forecasting Based on the PSO-RVR Model
    Zhang Yan
    Yuan Genji
    Ji Hanran
    Fan Hui
    Li Jinjiang
    THIRD INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2018, 10828
  • [25] Short-Term Power Load Forecasting Based on SAPSO-CNN-LSTM Model considering Autocorrelated Errors
    Zhang, Yilin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [26] Short-term load forecasting method based on PCC-LSTM model
    Liu Q.
    Liu Y.
    Wen Y.
    He J.
    Li X.
    Bi D.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (12): : 2529 - 2536
  • [27] Short-Term Household Load Forecasting Based on Attention Mechanism and CNN-ICPSO-LSTM
    Ma L.
    Wang L.
    Zeng S.
    Zhao Y.
    Liu C.
    Zhang H.
    Wu Q.
    Ren H.
    Energy Engineering: Journal of the Association of Energy Engineering, 2024, 121 (06): : 1473 - 1493
  • [28] Ultra-short-term Power Load Forecasting Based on Cluster Empirical Mode Decomposition of CNN-LSTM
    Liu Y.
    Zhao Q.
    Dianwang Jishu/Power System Technology, 2021, 45 (11): : 4444 - 4451
  • [29] Short-term Load Forecasting with LSTM based Ensemble Learning
    Wang, Lingxiao
    Mao, Shiwen
    Wilamowski, Bogdan
    2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2019, : 793 - 800
  • [30] A Short-Term Load Demand Forecasting based on the Method of LSTM
    Bodur, Idris
    Celik, Emre
    Ozturk, Nihat
    10TH IEEE INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA 2021), 2021, : 171 - 174