Laser Spectroscopy and Quantum Optics in GaAs and InAs Semiconductor Quantum Dots

被引:0
|
作者
Steel, Duncan G. [1 ,2 ]
机构
[1] Univ Michigan, Dept EECS, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
关键词
SPONTANEOUS EMISSION; ENTANGLEMENT; EXCITATION; EXCITONS; STATE; SPIN; FIELD;
D O I
10.1016/bs.aamop.2015.07.001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This chapter reviews primarily the evolution of the understanding of coherent optical interactions and spectroscopy in semiconductor quantum dots. The work begins by a brief review of the dominance of complex many-body interactions in higher dimensional materials and then proceeds to examine the behavior in quantum dots. The work reviews the knowledge extracted using frequency domain spectroscopy techniques, which has provided considerable insight into the physics of these systems. The results show that quantum confinement suppresses the kind of many-body physics seen in bulk material and allows the optical interaction to be well described by two or few state energy-level diagrams and the master equations using the density matrix. Numerous examples of classical atomic behavior are reviewed including Rabi oscillations, coherent population trapping, and the Mollow absorption spectrum. The chapter also discusses how these structures can be used as a platform for possible applications to quantum information sciences. Finally, the chapter concludes by examining the role of the hyperfine interaction. Unlike atomic systems with one nucleus, quantum dot excitons involve of order 104 nuclei. The hyperfine interaction is the origin of decoherence of the spin doublet ground state in a negatively charged quantum dot. However, the optical studies have shown an unexpected coupling between the exciton and the nuclei that leads to freezing of the nuclear fluctuations.
引用
收藏
页码:181 / 222
页数:42
相关论文
共 50 条
  • [1] Conductance spectroscopy of InAs quantum dots buried in GaAs
    Yoh, K
    Kazama, H
    PHYSICA E, 2000, 6 (1-4): : 490 - 494
  • [2] Photocurrent spectroscopy of single InAs/GaAs quantum dots
    Fasching, G
    Schrey, FF
    Brezna, W
    Smoliner, J
    Strasser, G
    Unterrainer, K
    PHYSICA STATUS SOLIDI C - CONFERENCES AND CRITICAL REVIEWS, VOL 2, NO 8, 2005, 2 (08): : 3114 - 3117
  • [3] Capacitance spectroscopy of InAs/GaAs quantum dots structures
    Chiquito, AJ
    Pusep, YA
    Mergulhao, S
    Galzerani, JC
    Moshegov, NT
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, PTS I AND II, 2001, 87 : 1099 - 1100
  • [4] Ultrafast photoluminescence spectroscopy of InAs/GaAs quantum dots
    Neudert, K.
    Trojanek, F.
    Kuldova, K.
    Oswald, J.
    Hospodkova, A.
    Maly, P.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, NO 4, 2009, 6 (04): : 853 - +
  • [5] Modulation spectroscopy of GaAs covered by InAs quantum dots
    Jin, P
    Meng, XQ
    Zhang, ZY
    Li, CM
    Qu, SC
    Xu, B
    Liu, FQ
    Wang, ZG
    Li, YG
    Zhang, CZ
    Pan, SH
    CHINESE PHYSICS LETTERS, 2002, 19 (07) : 1010 - 1012
  • [6] Self-assembled InAs/GaAs quantum dots and quantum dot laser
    Zhanguo Wang
    Fengqi Liu
    Jiben Liang
    Bo Xu
    Science in China Series A: Mathematics, 2000, 43 : 861 - 870
  • [7] Self-assembled InAs/GaAs quantum dots and quantum dot laser
    Wang, ZG
    Liu, FQ
    Liang, JB
    Xu, B
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (08): : 861 - 870
  • [8] Self-assembled InAs/GaAs quantum dots and quantum dot laser
    王占国
    刘峰奇
    梁基本
    徐波
    Science China Mathematics, 2000, (08) : 861 - 870
  • [9] Polarization dependent photocurrent spectroscopy of InAs/GaAs quantum dots
    Chu, L
    Arzberger, M
    Zrenner, A
    Böhm, G
    Abstreiter, G
    APPLIED PHYSICS LETTERS, 1999, 75 (15) : 2247 - 2249
  • [10] Single dot spectroscopy on InAs/GaAs piezoelectric quantum dots
    Dialynas, G. E.
    Chatzidimitriou, N.
    Kalliakos, S.
    Tsintzos, S.
    Savvidis, P. G.
    Hatzopoulos, Z.
    Pelekanos, N. T.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2008, 205 (11): : 2566 - 2568