COMPACTNESS OF HIGHER-ORDER SOBOLEV EMBEDDINGS

被引:15
|
作者
Slavikova, Lenka [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
关键词
Compactness; Sobolev space; rearrangement-invariant space; isoperimetric function; almost-compact embedding; John domain; Maz'ya domain; product probability space; integral operator; INEQUALITIES; OPERATORS; THEOREMS;
D O I
10.5565/PUBLMAT_59215_06
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study higher-order compact Sobolev embeddings on a domain Omega subset of R-n endowed with a probability measure nu and satisfying certain isoperimetric inequality. Given m is an element of N, we present a condition on a pair of rearrangement-invariant spaces X(Omega, nu) and Y(Omega, nu) which suffices to guarantee a compact embedding of the Sobolev space (VX)-X-m(Omega, nu) into Y(Omega, nu). The condition is given in terms of compactness of certain one-dimensional operator depending on the isoperimetric function of (Omega, nu). We then apply this result to the characterization of higher-order compact Sobolev embeddings on concrete measure spaces, including John domains, Maz'ya classes of Euclidean domains and product probability spaces, whose standard example is the Gauss space.
引用
收藏
页码:373 / 448
页数:76
相关论文
共 50 条