COMPACTNESS OF HIGHER-ORDER SOBOLEV EMBEDDINGS

被引:15
|
作者
Slavikova, Lenka [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
关键词
Compactness; Sobolev space; rearrangement-invariant space; isoperimetric function; almost-compact embedding; John domain; Maz'ya domain; product probability space; integral operator; INEQUALITIES; OPERATORS; THEOREMS;
D O I
10.5565/PUBLMAT_59215_06
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study higher-order compact Sobolev embeddings on a domain Omega subset of R-n endowed with a probability measure nu and satisfying certain isoperimetric inequality. Given m is an element of N, we present a condition on a pair of rearrangement-invariant spaces X(Omega, nu) and Y(Omega, nu) which suffices to guarantee a compact embedding of the Sobolev space (VX)-X-m(Omega, nu) into Y(Omega, nu). The condition is given in terms of compactness of certain one-dimensional operator depending on the isoperimetric function of (Omega, nu). We then apply this result to the characterization of higher-order compact Sobolev embeddings on concrete measure spaces, including John domains, Maz'ya classes of Euclidean domains and product probability spaces, whose standard example is the Gauss space.
引用
收藏
页码:373 / 448
页数:76
相关论文
共 50 条
  • [1] Higher-order Sobolev embeddings and isoperimetric inequalities
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    ADVANCES IN MATHEMATICS, 2015, 273 : 568 - 650
  • [2] Higher-order Sobolev embeddings into spaces of Campanato and Morrey type
    Cavaliere, Paola
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2025, 251
  • [3] On sharp higher order sobolev embeddings
    Milman, M
    Pustylnik, E
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2004, 6 (03) : 495 - 511
  • [4] Higher-order Sobolev-type embeddings on Carnot-Caratheodory spaces
    Francu, Martin
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (07) : 1033 - 1052
  • [5] COMPACTNESS OF EMBEDDINGS OF SOBOLEV SPACES
    DUC, DM
    DUNG, L
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 40 : 105 - 119
  • [6] ON REIDER METHOD AND HIGHER-ORDER EMBEDDINGS
    BELTRAMETTI, M
    FRANCIA, P
    SOMMESE, AJ
    DUKE MATHEMATICAL JOURNAL, 1989, 58 (02) : 425 - 439
  • [7] Compactness of Sobolev embeddings and decay of norms
    Lang, Jan
    Mihula, Zdenek
    Pick, Lubos
    STUDIA MATHEMATICA, 2022, 265 (01) : 1 - 36
  • [8] Compactness of Solutions to Higher-Order Elliptic Equations
    Niu, Miaomiao
    Tang, Zhongwei
    Zhou, Ning
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (10) : 8703 - 8754
  • [9] The Higher-Order Sobolev-Type Models
    Zamyshlyaeva, A. A.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2014, 7 (02): : 5 - 28
  • [10] Higher-order Lp isoperimetric and Sobolev inequalities
    Haddad, Julian
    Langharst, Dylan
    Putterman, Eli
    Roysdon, Michael
    Ye, Deping
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (02)