Speech as a Biomarker for COVID-19 Detection Using Machine Learning

被引:8
|
作者
Usman, Mohammed [1 ]
Gunjan, Vinit Kumar [2 ]
Wajid, Mohd [3 ]
Zubair, Mohammed [1 ]
Siddiquee, Kazy Noor-e-alam [4 ]
机构
[1] King Khalid Univ, Dept Elect Engn, Abha 61411, Saudi Arabia
[2] CMR Inst Technol, Dept Comp Sci & Engn, Hyderabad, India
[3] Aligarh Muslim Univ, Dept Elect Engn, ZHCET, Aligarh 202002, Uttar Pradesh, India
[4] Univ Sci & Technol, Dept Comp Sci & Engn, Chittagong, Bangladesh
关键词
RESPIRATORY SINUS ARRHYTHMIA; ARTIFICIAL-INTELLIGENCE; MORTALITY RISK; CLASSIFICATION; PREDICTION; REGRESSION; DIAGNOSIS; RECOGNITION; EXTRACTION; HEARTBEAT;
D O I
10.1155/2022/6093613
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The use of speech as a biomedical signal for diagnosing COVID-19 is investigated using statistical analysis of speech spectral features and classification algorithms based on machine learning. It is established that spectral features of speech, obtained by computing the short-time Fourier Transform (STFT), get altered in a statistical sense as a result of physiological changes. These spectral features are then used as input features to machine learning-based classification algorithms to classify them as coming from a COVID-19 positive individual or not. Speech samples from healthy as well as "asymptomatic" COVID-19 positive individuals have been used in this study. It is shown that the RMS error of statistical distribution fitting is higher in the case of speech samples of COVID-19 positive speech samples as compared to the speech samples of healthy individuals. Five state-of-the-art machine learning classification algorithms have also been analyzed, and the performance evaluation metrics of these algorithms are also presented. The tuning of machine learning model parameters is done so as to minimize the misclassification of COVID-19 positive individuals as being COVID-19 negative since the cost associated with this misclassification is higher than the opposite misclassification. The best performance in terms of the "recall" metric is observed for the Decision Forest algorithm which gives a recall value of 0.7892.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Analysis and Prediction of COVID-19 using Machine Learning
    Parthiban, M.
    Alphy, Anna
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [22] Prediction of COVID-19 severity using machine learning
    Karaduzovic-Hadziabdic, Kanita
    Adilovic, Muhamed
    Zhang, Lu
    Lumley, Andrew, I
    Shah, Pranay
    Shoaib, Muhammad
    Satagopam, Venkata
    Srivastava, Prashant Kumar
    Emanueli, Costanza
    Greco, Simona
    Made, Alisia
    Padro, Teresa
    Domingo, Pedro
    Lustrek, Mitja
    Scholz, Markus
    Rosolowski, Maciej
    Jordan, Marko
    Benczik, Bettina
    Agg, Bence
    Ferdinandy, Peter
    Baker, Andrew H.
    Fagherazzi, Guy
    Ollert, Markus
    Michel, Joanna
    Sanchez, Gabriel
    Firat, Hueseyin
    Brandenburger, Timo
    Martelli, Fabio
    Badimon, Lina
    Devaux, Yvan
    CLINICAL AND TRANSLATIONAL MEDICINE, 2024, 14 (10):
  • [23] Battling COVID-19 using machine learning: A review
    Chadaga, Krishnaraj
    Prabhu, Srikanth
    Vivekananda, Bhat K.
    Niranjana, S.
    Umakanth, Shashikiran
    COGENT ENGINEERING, 2021, 8 (01):
  • [24] Comprehensive Survey of Machine Learning Systems for COVID-19 Detection
    Alsaaidah, Bayan
    Al-Hadidi, Moh'd Rasoul
    Al-Nsour, Heba
    Masadeh, Raja
    AlZubi, Nael
    JOURNAL OF IMAGING, 2022, 8 (10)
  • [25] Detection and risk assessment of COVID-19 through machine learning
    Luna-Benoso, B.
    Martinez-Perales, J. C.
    Cortes-Galicia, J.
    Morales-Rodriguez, U. S.
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2024, 11 (01): : 207 - 216
  • [26] Detection of COVID-19 Enhanced by a Deep Extreme Learning Machine
    Inam, Aaqib
    Zhuli
    Sarwar, Ayesha
    Salah-ud-din
    Atta, Ayesha
    Naaseer, Iftikhar
    Siddiqui, Shahan Yamin
    Khan, Muhammad Adnan
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 27 (03): : 701 - 712
  • [27] A Machine Learning Approach as an Aid for Early COVID-19 Detection
    Martinez-Velazquez, Roberto
    Tobon, Diana P., V
    Sanchez, Alejandro
    El Saddik, Abdulmotaleb
    Petriu, Emil
    SENSORS, 2021, 21 (12)
  • [28] Accurate COVID-19 detection using full blood count data and machine learning
    Yang, Richard
    Chen, Ding
    Yang, Qingping
    Qiu, Yang
    Wang, Fang
    International Journal of Metrology and Quality Engineering, 2024, 15
  • [29] COVID-19 detection and classification for machine learning methods using human genomic data
    Ahemad M.T.
    Hameed M.A.
    Vankdothu R.
    Measurement: Sensors, 2022, 24
  • [30] Predictive models for COVID-19 detection using routine blood tests and machine learning
    Kistenev, Yury V.
    Vrazhnov, Denis A.
    Shnaider, Ekaterina E.
    Zuhayri, Hala
    HELIYON, 2022, 8 (10)