Detection of COVID-19 Enhanced by a Deep Extreme Learning Machine

被引:9
|
作者
Inam, Aaqib [1 ]
Zhuli [1 ]
Sarwar, Ayesha [1 ]
Salah-ud-din [2 ]
Atta, Ayesha [3 ]
Naaseer, Iftikhar [4 ]
Siddiqui, Shahan Yamin [5 ,6 ]
Khan, Muhammad Adnan [7 ]
机构
[1] Xi An Jiao Tong Univ, Sch Software, Inst Elect & Informat Engn, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Syst Engn Inst, Dept Automat Sci & Technol, Xian, Shaanxi, Peoples R China
[3] Govt Coll Univ, Dept Comp Sci, Lahore 54000, Pakistan
[4] Super Univ, Dept Comp Sci & Informat Technol, Lahore 54000, Pakistan
[5] Minhaj Univ Lahore, Sch Comp Sci, Lahore 54000, Pakistan
[6] Natl Coll Business Adm & Econ, Sch Comp Sci, Lahore 54000, Pakistan
[7] Riphah Int Univ, Fac Comp, Riphah Sch Comp & Innovat, Lahore Campus, Lahore 54000, Pakistan
来源
关键词
COVID-19; deep extreme learning machine; real-time sequential analysis; infectious disease; smart decision; hybrid artificial intelligent systems; FORECASTING-MODEL;
D O I
10.32604/iasc.2021.014235
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The outbreak of coronavirus disease 2019 (COVID-19) has had a tremendous effect on daily life and a great impact on the economy of the world. More than 200 countries have been affected. The diagnosis of coronavirus is a major challenge for medical experts. Early detection is one of the most effective ways to reduce the mortality rate and increase the chance of successful treatment. At this point in time, no antiviral drugs have been approved for use, and clinically approved vaccines have only recently become available in some countries. Hybrid artificial intelligence computer-aided systems for the diagnosis of disease are needed to help prevent the rapid spread of COVID-19. Various detection methods are being used to diagnose coronavirus. Deep extreme learning is the most successful artificial intelligence (AI) technique that efficiently supports medical experts in making smart decisions for the detection of COVID-19. In this study, a novel detection model to diagnose COVID-19 has been introduced to achieve a better accuracy rate. The study focuses on quantitative analysis and disease detection of COVID-19 empowered by a statistical real-time sequential deep extreme learning machine (D2C-RTS-DELM). The experimental results show 98.18% accuracy and 98.87% selectivity, and the probability of detection is 98.84%. The results demonstrate that the quantitative analysis and statistical real-time sequential deep extreme learning machine used in this study perform well in forecasting COVID-19 as well as in making timely decisions for treatment.
引用
收藏
页码:701 / 712
页数:12
相关论文
共 50 条
  • [1] COVID-19 Detection Mechanism in Vehicles Using a Deep Extreme Machine Learning Approach
    Fatima, Areej
    Shahzad, Tariq
    Abbas, Sagheer
    Rehman, Abdur
    Saeed, Yousaf
    Alharbi, Meshal
    Khan, Muhammad Adnan
    Ouahada, Khmaies
    DIAGNOSTICS, 2023, 13 (02)
  • [2] CovFrameNet: An Enhanced Deep Learning Framework for COVID-19 Detection
    Oyelade, Olaide Nathaniel
    Ezugwu, Absalom El-Shamir
    Chiroma, Haruna
    IEEE ACCESS, 2021, 9 : 77905 - 77919
  • [3] A comprehensive review of COVID-19 detection with machine learning and deep learning techniques
    Das, Sreeparna
    Ayus, Ishan
    Gupta, Deepak
    HEALTH AND TECHNOLOGY, 2023, 13 (04) : 679 - 692
  • [4] A comprehensive review of COVID-19 detection with machine learning and deep learning techniques
    Sreeparna Das
    Ishan Ayus
    Deepak Gupta
    Health and Technology, 2023, 13 : 679 - 692
  • [5] Benchmarking Multiple Deep Learning Models for Enhanced COVID-19 Detection
    Alharthi, Sadeem
    Alqurashi, Shahad
    Alamir, Manal
    AlGhamdi, Manal
    Alsubait, Tahani
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2020, 20 (08): : 112 - 118
  • [6] COVID-19 Detection Empowered with Machine Learning and Deep Learning Techniques: A Systematic Review
    Rehman, Amir
    Iqbal, Muhammad Azhar
    Xing, Huanlai
    Ahmed, Irfan
    APPLIED SCIENCES-BASEL, 2021, 11 (08):
  • [7] Particle Swarm Optimization-Based Extreme Learning Machine for COVID-19 Detection
    Albadr, Musatafa Abbas Abbood
    Tiun, Sabrina
    Ayob, Masri
    AL-Dhief, Fahad Taha
    COGNITIVE COMPUTATION, 2024, 16 (04) : 1858 - 1873
  • [8] Performance Comparison of Deep and Machine Learning Approaches Toward COVID-19 Detection
    Yahyaoui, Amani
    Rasheed, Jawad
    Alsubai, Shtwai
    Shubair, Raed M.
    Alqahtani, Abdullah
    Isler, Buket
    Haider, Rana Zeeshan
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 37 (02): : 2247 - 2261
  • [9] A Comparative Study of COVID-19 Detection Using Deep and Machine Learning Methods
    Sheneamer, Abdullah
    Farahat, Hanan
    Hamdi, Ebtehal
    Qahtani, Mona
    Alkhairat, Bashyir
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (03): : 738 - 745
  • [10] Deep Learning Models for COVID-19 Detection
    Serte, Sertan
    Dirik, Mehmet Alp
    Al-Turjman, Fadi
    SUSTAINABILITY, 2022, 14 (10)