Identifying grey-box thermal models with Bayesian neural networks

被引:26
|
作者
Hossain, Md Monir [1 ]
Zhang, Tianyu [2 ]
Ardakanian, Omid [2 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 1H9, Canada
[2] Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2E8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
System identification; Transfer learning; Bayesian neural network; Thermal models; Smart thermostats; PREDICTIVE CONTROL; RELATIVE-HUMIDITY; CONTROL LOGIC; TEMPERATURE; PERFORMANCE; BUILDINGS; BEHAVIOR; SIMULATION; ENVELOPES; OCCUPANCY;
D O I
10.1016/j.enbuild.2021.110836
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Smart thermostats are one of the most prevalent home automation products. Despite the importance of having an accurate thermal model for the operation of smart thermostats, reliable identification of this model is still an open problem. In this paper, we explore various techniques for establishing a suitable thermal model using time series data generated by smart thermostats. We show that Bayesian neural networks can be used to estimate parameters of a grey-box thermal model if sufficient training data is available, and this model outperforms several black-box models in terms of the temperature prediction accuracy. Leveraging real data from 8,884 homes equipped with smart thermostats, we discuss how the prior knowledge about the model parameters can be utilized to quickly build an accurate thermal model for another home with similar floor area and age in the same climate zone. Moreover, we investigate how to adapt the model originally built for the same home in another season using a small amount of data collected in this season. Our results confirm that maintaining only a small number of pre-trained thermal models will suffice to quickly build accurate thermal models for many other homes, and that 1 day smart thermostat data could significantly improve the accuracy of transferred models in another season. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A grey-box approach to component composition
    de Bruin, H
    GENERATIVE AND COMPONENT-BASED SOFTWARE ENGINEERING, PROCEEDINGS, 2000, 1799 : 195 - 209
  • [42] Grey-box identification of a TMP refiner
    Allison, BJ
    Isaksson, AJ
    Karlstrom, A
    PULP & PAPER-CANADA, 1997, 98 (04) : 50 - 53
  • [43] Machine Learning Enhanced Grey-Box Modeling for Building Thermal Modeling
    Ellis, Matthew J.
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 3927 - 3932
  • [44] Grey-box identification of the continuous digester
    Funkquist, J
    CONTROL SYSTEMS '96, PREPRINTS, 1996, : 147 - 152
  • [45] Grey-box modeling of HCCI engines
    Bidarvatan, M.
    Thakkar, V.
    Shahbakhti, M.
    Bahri, B.
    Aziz, A. Abdul
    APPLIED THERMAL ENGINEERING, 2014, 70 (01) : 397 - 409
  • [46] Refined Grey-Box Fuzzing with SIVO
    Nikolic, Ivica
    Mantu, Radu
    Shen, Shiqi
    Saxena, Prateek
    DETECTION OF INTRUSIONS AND MALWARE, AND VULNERABILITY ASSESSMENT, DIMVA 2021, 2021, 12756 : 106 - 129
  • [47] Design and test of reduced grey-box models adapted to office buildings
    Pean, Thibault
    Ibanez Iralde, Soledad
    Pascual, Jordi
    Salom, Jaume
    PROCEEDINGS OF BUILDING SIMULATION 2021: 17TH CONFERENCE OF IBPSA, 2022, 17 : 1687 - 1694
  • [48] Toolbox for development and validation of grey-box building models for forecasting and control
    De Coninck, Roel
    Magnusson, Fredrik
    Akesson, Johan
    Helsen, Lieve
    JOURNAL OF BUILDING PERFORMANCE SIMULATION, 2016, 9 (03) : 288 - 303
  • [49] Grey-box modeling of small-scale unmanned helicopter based on Bayesian technique
    Fang, Zhou
    Li, Ping
    Han, Bo
    Hou, Xin
    Zhejiang Daxue Xuebao(Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2009, 43 (11): : 1945 - 1950
  • [50] Modeling microalgal abundance with artificial neural networks: Demonstration of a heuristic 'Grey-Box' to deconvolve and quantify environmental influences
    Millie, David F.
    Weckman, Gary R.
    Young, William A., II
    Ivey, James E.
    Carrick, Hunter J.
    Fahnenstiel, Gary L.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2012, 38 : 27 - 39