Compact Hermitian surfaces of constant antiholomorphic sectional curvatures

被引:4
|
作者
Apostolov, V
Ganchev, G
Ivanov, S
机构
[1] Bulgarian Acad Sci, Inst Math Acad, BU-1113 Sofia, Bulgaria
[2] Univ Sofia, Fac Math & Informat, Dept Geometry, Sofia 1164, Bulgaria
关键词
compact Hermitian surfaces; antiholomorphic Riemannian and antiholomorphic Hermitian sectional curvatures; self-dual Hermitian surfaces;
D O I
10.1090/S0002-9939-97-04043-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Compact Hermitian surfaces of constant antiholomorphic sectional curvatures with respect to the Riemannian curvature tensor and with respect to the Hermitian curvature tensor are considered. It is proved: a compact Hermitian surface of constant antiholomorphic Riemannian sectional curvatures is a self-dual Kaehler surface; a compact Hermitian surface of constant antiholomorphic Hermitian sectional curvatures is either a Kaehler surface of constant (non-zero) holomorphic sectional curvatures or a conformally flat Hermitian surface.
引用
收藏
页码:3705 / 3714
页数:10
相关论文
共 50 条
  • [41] Compact self-dual Hermitian surfaces
    Apostolov, V
    Davidov, J
    Muskarov, O
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (08) : 3051 - 3063
  • [42] Golden Riemannian Manifolds Having Constant Sectional Curvatures and Their Submanifolds
    Sahin, Fulya
    Sahin, Bayram
    Erdogan, Feyza Esra
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (04)
  • [43] Tangent bundles of quasi-constant holomorphic sectional curvatures
    Bejan, C. L.
    Oproiu, V.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2006, 11 (01): : 11 - 22
  • [44] Golden Riemannian Manifolds Having Constant Sectional Curvatures and Their Submanifolds
    Fulya Şahin
    Bayram Şahin
    Feyza Esra Erdoğan
    Mediterranean Journal of Mathematics, 2022, 19
  • [45] Kahler manifolds of quasi-constant holomorphic sectional curvatures
    Ganchev, Georgi
    Mihova, Vesselka
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2008, 6 (01): : 43 - 75
  • [46] Surfaces of constant principal-curvatures ratio in isotropic geometry
    Yorov, Khusrav
    Skopenkov, Mikhail
    Pottmann, Helmut
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2024,
  • [47] RICCI CURVATURES ON HERMITIAN MANIFOLDS
    Liu, Kefeng
    Yang, Xiaokui
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (07) : 5157 - 5196
  • [48] Compact Embedded Hypersurfaces with Constant Higher Order Anisotropic Mean Curvatures
    He, Yijun
    Li, Haizhong
    Ma, Hui
    Ge, Jianquan
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (02) : 853 - 868
  • [49] FUNDAMENTAL CONSTANT OF A LINE BUNDLE OVER A COMPACT HERMITIAN MANIFOLD
    GAUDUCHON, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (11): : 393 - 396
  • [50] COMPLETE HYPERSURFACES WITH CONSTANT MEAN-CURVATURE AND NONNEGATIVE SECTIONAL CURVATURES
    HU, ZJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (09) : 2835 - 2840