Compact Hermitian surfaces of constant antiholomorphic sectional curvatures

被引:4
|
作者
Apostolov, V
Ganchev, G
Ivanov, S
机构
[1] Bulgarian Acad Sci, Inst Math Acad, BU-1113 Sofia, Bulgaria
[2] Univ Sofia, Fac Math & Informat, Dept Geometry, Sofia 1164, Bulgaria
关键词
compact Hermitian surfaces; antiholomorphic Riemannian and antiholomorphic Hermitian sectional curvatures; self-dual Hermitian surfaces;
D O I
10.1090/S0002-9939-97-04043-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Compact Hermitian surfaces of constant antiholomorphic sectional curvatures with respect to the Riemannian curvature tensor and with respect to the Hermitian curvature tensor are considered. It is proved: a compact Hermitian surface of constant antiholomorphic Riemannian sectional curvatures is a self-dual Kaehler surface; a compact Hermitian surface of constant antiholomorphic Hermitian sectional curvatures is either a Kaehler surface of constant (non-zero) holomorphic sectional curvatures or a conformally flat Hermitian surface.
引用
收藏
页码:3705 / 3714
页数:10
相关论文
共 50 条
  • [21] Prescribed Webster Scalar Curvatures on Compact Pseudo-Hermitian Manifolds
    Dong, Yuxin
    Ren, Yibin
    Yu, Weike
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (05)
  • [22] Prescribed Webster Scalar Curvatures on Compact Pseudo-Hermitian Manifolds
    Yuxin Dong
    Yibin Ren
    Weike Yu
    The Journal of Geometric Analysis, 2022, 32
  • [24] Compact Hermitian surfaces of Einstein type with respect to the Hermitian connection
    Ganchev, G
    Ivanov, S
    MONATSHEFTE FUR MATHEMATIK, 1997, 123 (01): : 53 - 59
  • [25] Compact Hermitian surfaces of Einstein type with respect to the Hermitian connection
    Georgi Ganchev
    Stefan Ivanov
    Monatshefte für Mathematik, 1997, 123 : 53 - 59
  • [26] Chern-Ricci curvatures, holomorphic sectional curvature and Hermitian metrics
    Haojie Chen
    Lingling Chen
    Xiaolan Nie
    Science China Mathematics, 2021, 64 : 763 - 780
  • [27] Chern-Ricci curvatures, holomorphic sectional curvature and Hermitian metrics
    Haojie Chen
    Lingling Chen
    Xiaolan Nie
    Science China(Mathematics), 2021, 64 (04) : 763 - 780
  • [28] Almost Kenmotsu manifolds with constant Reeb or ?-sectional curvatures
    Wang, Yaning
    Wang, Pei
    FILOMAT, 2023, 37 (08) : 2495 - 2502
  • [29] Chern-Ricci curvatures, holomorphic sectional curvature and Hermitian metrics
    Chen, Haojie
    Chen, Lingling
    Nie, Xiaolan
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (04) : 763 - 780
  • [30] Riemannian manifolds of quasi-constant sectional curvatures
    Ganchev, G
    Mihova, V
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2000, 522 : 119 - 141