Compact Hermitian surfaces of constant antiholomorphic sectional curvatures

被引:4
|
作者
Apostolov, V
Ganchev, G
Ivanov, S
机构
[1] Bulgarian Acad Sci, Inst Math Acad, BU-1113 Sofia, Bulgaria
[2] Univ Sofia, Fac Math & Informat, Dept Geometry, Sofia 1164, Bulgaria
关键词
compact Hermitian surfaces; antiholomorphic Riemannian and antiholomorphic Hermitian sectional curvatures; self-dual Hermitian surfaces;
D O I
10.1090/S0002-9939-97-04043-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Compact Hermitian surfaces of constant antiholomorphic sectional curvatures with respect to the Riemannian curvature tensor and with respect to the Hermitian curvature tensor are considered. It is proved: a compact Hermitian surface of constant antiholomorphic Riemannian sectional curvatures is a self-dual Kaehler surface; a compact Hermitian surface of constant antiholomorphic Hermitian sectional curvatures is either a Kaehler surface of constant (non-zero) holomorphic sectional curvatures or a conformally flat Hermitian surface.
引用
收藏
页码:3705 / 3714
页数:10
相关论文
共 50 条