SYMPLECTIC RUNGE-KUTTA METHODS OF HIGH ORDER BASED ON W-TRANSFORMATION

被引:1
|
作者
Xia, Kaifeng [1 ]
Cong, Yuhao [1 ,2 ]
Sun, Geng [3 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200041, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Runge-Kutta method; symplectic and algebraically stable method; W-transformation;
D O I
10.11948/2017074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper , characterizations of symmetric and symplectic Runge-Kutta methods based on the W-transformation of Hairer and Wanner are presented. Using these characterizations, we construct two families symplectic (symmetric and algebraically stable or algebraically stable) Runge-Kutta methods of high order. Methods constructed in this way and presented in this paper include and extend the known classes of high order implicit Runge-Kutta methods.
引用
收藏
页码:1185 / 1199
页数:15
相关论文
共 50 条
  • [21] Pseudo-symplectic Runge-Kutta methods
    Aubry, A
    Chartier, P
    BIT, 1998, 38 (03): : 439 - 461
  • [22] Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nystrom methods
    Blanes, S
    Moan, PC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 142 (02) : 313 - 330
  • [23] On implicit Runge-Kutta methods with high stage order
    C. Bendtsen
    BIT Numerical Mathematics, 1997, 37 : 221 - 226
  • [24] On implicit Runge-Kutta methods with high stage order
    Bendtsen, C
    BIT, 1997, 37 (01): : 221 - 226
  • [25] ON SYMMETRICAL RUNGE-KUTTA METHODS OF HIGH-ORDER
    CHAN, RPK
    COMPUTING, 1990, 45 (04) : 301 - 309
  • [26] Symplectic Runge-Kutta Schemes I: Order Conditions
    Sofroniou, M.
    Oevel, W.
    SIAM Journal on Numerical Analysis, 34 (05): : 2063 - 2086
  • [27] Continuous extensions to high order Runge-Kutta methods
    Papageorgiou, G
    Tsitouras, C
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1997, 65 (3-4) : 273 - 291
  • [28] On high order symmetric and symplectic trigonometrically fitted Runge-Kutta methods with an even number of stages
    Calvo, M.
    Franco, J. M.
    Montijano, J. I.
    Randez, L.
    BIT NUMERICAL MATHEMATICS, 2010, 50 (01) : 3 - 21
  • [29] ORDER BOUND FOR RUNGE-KUTTA METHODS
    BUTCHER, JC
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (03) : 304 - 315
  • [30] On high order symmetric and symplectic trigonometrically fitted Runge-Kutta methods with an even number of stages
    M. Calvo
    J. M. Franco
    J. I. Montijano
    L. Rández
    BIT Numerical Mathematics, 2010, 50 : 3 - 21