Pseudo-symplectic Runge-Kutta methods

被引:42
|
作者
Aubry, A [1 ]
Chartier, P [1 ]
机构
[1] Inst Rech Informat & Syst Aleatoires, F-35042 Rennes, France
来源
BIT | 1998年 / 38卷 / 03期
关键词
Hamiltonian systems; pseudo-symplectic Runge-Kutta methods; symplectic Runge-Kutta methods; pseudo-symplecticness conditions; simplifying assumptions;
D O I
10.1007/BF02510253
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Apart from specific methods amenable to specific problems, symplectic Runge-Kutta methods are necessarily implicit. The aim of this paper is to construct explicit Runge-Kutta methods which mimic symplectic ones as far as the linear growth of the global error is concerned. Such method of order p have to be pseudo-symplectic of pseudo-symplecticness order 2p, i.e. to preserve the symplectic form to within O(h(2p))-terms. Pseudo-symplecticness conditions are then derived and the effective construction of methods discussed. Finally, the performances of the new methods are illustrated on several test problems.
引用
收藏
页码:439 / 461
页数:23
相关论文
共 50 条
  • [1] Pseudo-symplectic Runge-Kutta methods
    A. Aubry
    P. Chartier
    BIT Numerical Mathematics, 1998, 38 : 439 - 461
  • [2] A note on pseudo-symplectic Runge-Kutta methods
    Aubry, A
    Chartier, P
    BIT, 1998, 38 (04): : 802 - 806
  • [3] A note on pseudo-symplectic Runge-Kutta methods
    A. Aubry
    P. Chartier
    BIT Numerical Mathematics, 1998, 38 : 802 - 806
  • [4] Explicit pseudo-symplectic Runge-Kutta methods for stochastic Hamiltonian systems
    Anton, Cristina
    APPLIED NUMERICAL MATHEMATICS, 2023, 185 : 18 - 37
  • [5] Efficient symplectic Runge-Kutta methods
    Chan, RPK
    Liu, HY
    Sun, G
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (02) : 908 - 924
  • [6] SYMPLECTIC PARTITIONED RUNGE-KUTTA METHODS
    SUN, G
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1993, 11 (04): : 365 - 372
  • [7] PARAMETERS FOR PSEUDO RUNGE-KUTTA METHODS
    BYRNE, GD
    COMMUNICATIONS OF THE ACM, 1967, 10 (02) : 102 - &
  • [8] A CLASS OF PSEUDO RUNGE-KUTTA METHODS
    CAIRA, R
    COSTABILE, C
    COSTABILE, F
    BIT, 1990, 30 (04): : 642 - 649
  • [9] SYMPLECTIC RUNGE-KUTTA METHODS WITH REAL EIGENVALUES
    HAIRER, E
    WANNER, G
    BIT, 1994, 34 (02): : 310 - 312
  • [10] Symplectic properties of multistep Runge-Kutta methods
    Xiao, AG
    Tang, YF
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (10-11) : 1329 - 1338