Pseudo-symplectic Runge-Kutta methods

被引:42
|
作者
Aubry, A [1 ]
Chartier, P [1 ]
机构
[1] Inst Rech Informat & Syst Aleatoires, F-35042 Rennes, France
来源
BIT | 1998年 / 38卷 / 03期
关键词
Hamiltonian systems; pseudo-symplectic Runge-Kutta methods; symplectic Runge-Kutta methods; pseudo-symplecticness conditions; simplifying assumptions;
D O I
10.1007/BF02510253
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Apart from specific methods amenable to specific problems, symplectic Runge-Kutta methods are necessarily implicit. The aim of this paper is to construct explicit Runge-Kutta methods which mimic symplectic ones as far as the linear growth of the global error is concerned. Such method of order p have to be pseudo-symplectic of pseudo-symplecticness order 2p, i.e. to preserve the symplectic form to within O(h(2p))-terms. Pseudo-symplecticness conditions are then derived and the effective construction of methods discussed. Finally, the performances of the new methods are illustrated on several test problems.
引用
收藏
页码:439 / 461
页数:23
相关论文
共 50 条
  • [41] THE RUNGE-KUTTA METHODS
    THOMAS, B
    BYTE, 1986, 11 (04): : 191 - &
  • [42] Pseudo-energy-preserving explicit Runge-Kutta methods
    de Leon, Gabriel A. Barrios
    Ketcheson, David I.
    Ranocha, Hendrik
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2025, 59 (02) : 729 - 748
  • [43] Symplectic partitioned Runge-Kutta methods with the phase-lag property
    Monovasilis, Th
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) : 9075 - 9084
  • [44] Multi-symplectic Runge-Kutta methods for nonlinear dirac equations
    Hong, JL
    Li, C
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 211 (02) : 448 - 472
  • [45] Symplectic Partitioned Runge-Kutta methods with minimal phase-lag
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (07) : 1251 - 1254
  • [46] Symmetric and symplectic exponentially fitted Runge-Kutta methods of high order
    Calvo, M.
    Franco, J. M.
    Montijano, J. I.
    Randez, L.
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (12) : 2044 - 2056
  • [47] Symplectic exponential Runge-Kutta methods for solving nonlinear Hamiltonian systems
    Mei, Lijie
    Wu, Xinyuan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 338 : 567 - 584
  • [48] A family of trigonometrically-fitted partitioned Runge-Kutta symplectic methods
    Monovasills, Th.
    Kalogiratou, Z.
    Simos, T. E.
    COMPUTATION IN MODERN SCIENCE AND ENGINEERING VOL 2, PTS A AND B, 2007, 2 : 1306 - +
  • [49] Variational symplectic diagonally implicit Runge-Kutta methods for isospectral systems
    da Silva, Clauson Carvalho
    Lessig, Christian
    BIT NUMERICAL MATHEMATICS, 2022, 62 (04) : 1823 - 1840
  • [50] Variational symplectic diagonally implicit Runge-Kutta methods for isospectral systems
    Clauson Carvalho da Silva
    Christian Lessig
    BIT Numerical Mathematics, 2022, 62 : 1823 - 1840