A selective and sensitive electrochemical determination of catechol based on reduced graphene oxide decorated β-cyclodextrin nanosheet modified glassy carbon electrode

被引:11
|
作者
Nikhil, S. [2 ]
Karthika, A. [1 ,4 ]
Suresh, P. [2 ]
Suganthi, A. [1 ]
Rajarajan, M. [3 ]
机构
[1] Thiagarajar Coll, PG & Res Dept Chem, Madurai 625009, Tamil Nadu, India
[2] Madurai Kamaraj Univ, Sch Chem, Madurai 625021, Tamil Nadu, India
[3] Madurai Kamaraj Univ, Madurai 625021, Tamil Nadu, India
[4] Latha Mathavan Arts & Sci Coll, Madurai, Tamil Nadu, India
关键词
Electrochemical studies; Reduced graphene oxide; Glassy carbon electrode; Selectivity; Real sample analysis; GOLD NANOPARTICLES; FUNCTIONALIZED GRAPHENE; SENSING PLATFORM; QUANTUM DOTS; HYDROQUINONE; COMPOSITE; BIOSENSOR; NANOCOMPOSITE; SENSOR; FILM;
D O I
10.1016/j.apt.2021.04.027
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In the present work, we have demonstrated the fabrication of catechol (CC) biosensor based on reduced graphene oxide (rGO) decorated beta-cyclodextrin (beta-CD) nanosheet immobilized using nafion (Nf) on modified GCE (glassy carbon electrode). The rGO/beta-CD nanocomposite is synthesized through sonochemical approach and characterized by spectral (UV-visible, FT-IR, and Raman), analytical techniques (XRD, SEM, SAED, mapping analysis, HR-TEM and EDX) and electrochemical studies. The rGO/beta-CD/Nf modified GCE exhibit a prominent electrocatalytic activity towards selective and sensitive determination of CC than other modified electrodes. Besides, the electrochemical sensor was revealed an excellent current response for the determination of CC with wide linear ranges (0.1-0.7 mu M), high sensitivity (19.1 mu A mu M(-1)cm(2)) and very low detection limit (LOD) 0.0012 mM. The excellent reproducibility, selectivity, stability, and sensitivity results are achieved for the determination of CC. (C) 2021 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
引用
收藏
页码:2148 / 2159
页数:12
相关论文
共 50 条
  • [21] Graphene-based Heterostructure Modified Glassy Carbon Electrode for Sensitive Detection of Catechol
    Lei, Peng
    Wei, Peng-Jia
    Wu, Ni
    Li, Ming-Lu
    Shuang, Shao-Min
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2025, 53 (01) : 65 - 73
  • [22] NiO Nanoparticle-decorated graphene oxide nanosheets modified glassy carbon electrode for sensitive electrochemical detection of pethidine
    Song, Renjie
    Zhang, Hongxia
    Lv, Jiaosheng
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2023, 18 (09):
  • [23] CoFe2O4/reduced graphene oxide/ionic liquid modified glassy carbon electrode, a selective and sensitive electrochemical sensor for determination of methotrexate
    Ensafi, Ali A.
    Rezaloo, Fatemeh
    Rezaei, Behzad
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2017, 78 : 45 - 50
  • [24] Electrochemical sensing of phenacetin on electrochemically reduced graphene oxide modified glassy carbon electrode
    Meng, Xiao-Tong
    Zhu, De-Jing
    Jiang, Yu-Hang
    Cao, Yue
    Si, Wei-Meng
    Cao, Jun
    Li, Qiu-Hong
    Li, Jiao
    Lei, Wu
    NEW CARBON MATERIALS, 2022, 37 (04) : 764 - 771
  • [25] Sensitive and selective determination of tryptophan using a glassy carbon electrode modified with nano-CeO2/reduced graphene oxide composite
    Nie, Xue
    Zhang, Rui
    Tang, Zheng
    Wang, Haiyan
    Deng, Peihong
    Tang, Yougen
    MICROCHEMICAL JOURNAL, 2020, 159
  • [26] Electrochemical detection of selenium using glassy carbon electrode modified with reduced graphene oxide
    Idris, Azeez O.
    Mabuba, Nonhlangabezo
    Nkosi, Duduzile
    Maxakato, Nobanathi
    Arotiba, Omotayo A.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2017, 97 (06) : 534 - 547
  • [27] Electrochemical detection of pyrosine with electrochemically reduced graphene oxide modified glassy carbon electrode
    Kong, Yong
    Ren, Xiaolin
    Huo, Zongli
    Wang, Guoxin
    Tao, Yongxin
    Yao, Chao
    EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2013, 236 (06) : 955 - 961
  • [28] Electrochemical detection of pyrosine with electrochemically reduced graphene oxide modified glassy carbon electrode
    Yong Kong
    Xiaolin Ren
    Zongli Huo
    Guoxin Wang
    Yongxin Tao
    Chao Yao
    European Food Research and Technology, 2013, 236 : 955 - 961
  • [29] Highly sensitive determination of bisphenol A based on MoCuSe nanoparticles decorated reduced graphene oxide modified electrode
    Duan, Yinghao
    Li, Shuo
    Lei, Sheng
    Qiao, Jiantong
    Zou, Lina
    Ye, Baoxian
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 827 : 137 - 144
  • [30] Electrochemical determination of imidacloprid using poly(carbazole)/chemically reduced graphene oxide modified glassy carbon electrode
    Lei, Wu
    Wu, Qiuju
    Si, Weimeng
    Gu, Zhenyan
    Zhang, Yuehua
    Deng, Jiping
    Hao, Qingli
    SENSORS AND ACTUATORS B-CHEMICAL, 2013, 183 : 102 - 109