ON COLLAPSING CALABI-YAU FIBRATIONS

被引:9
|
作者
Li, Yang [1 ]
机构
[1] Inst Adv Study, Dept Math, Princeton, NJ 08540 USA
基金
英国工程与自然科学研究理事会;
关键词
LIMITS; MANIFOLDS;
D O I
10.4310/jdg/1615487004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop some techniques to study the adiabatic limiting behaviour of Calabi-Yau metrics on the total space of a fibration, and obtain strong control near the singular fibres by imposing restrictions on the singularity types. We prove a uniform lower bound on the metric up to the singular fibre, under fairly general hypotheses. Assuming a result in pluripotential theory, we prove a uniform fibre diameter bound for a Lefschetz K3 fibred Calabi-Yau 3-fold, which reduces the study of the collapsing metric to a locally non-collapsed situation, and we identify the Gromov-Hausdorff limit of the rescaled neighbourhood of the singular fibre.
引用
收藏
页码:451 / 483
页数:33
相关论文
共 50 条
  • [41] Nuclear Calabi-Yau space
    deWet, JA
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (06) : 1201 - 1210
  • [42] Generalized Calabi-Yau manifolds
    Hitchin, N
    QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 : 281 - 308
  • [43] DEGENERATIONS OF CALABI-YAU METRICS
    Tosatti, Valentino
    GEOMETRY AND PHYSICS IN CRACOW, 2011, 4 (03): : 495 - 505
  • [44] On generalized Calabi-Yau nilmanifolds
    Catellani, Giulio
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (01) : 39 - 57
  • [45] On generalized Calabi-Yau nilmanifolds
    Giulio Catellani
    Annali di Matematica Pura ed Applicata, 2008, 187 : 39 - 57
  • [46] Calabi-Yau threefolds with boundary
    Donaldson, Simon
    Lehmann, Fabian
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2025, 21 (03) : 1119 - 1170
  • [47] Calabi-Yau algebras and their deformations
    He, Ji-Wei
    Van Oystaeyen, Fred
    Zhang, Yinhuo
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2013, 56 (03): : 335 - 347
  • [48] Calabi-Yau manifolds from pairs of non-compact Calabi-Yau manifolds
    Lee, Nam-Hoon
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (04):
  • [49] Numerical Calabi-Yau metrics
    Douglas, Michael R.
    Karp, Robert L.
    Lukic, Sergio
    Reinbacher, Rene
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)
  • [50] On the prevalence of elliptic and genus one fibrations among toric hypersurface Calabi-Yau threefolds
    Yu-Chien Huang
    Washington Taylor
    Journal of High Energy Physics, 2019