ON COLLAPSING CALABI-YAU FIBRATIONS

被引:9
|
作者
Li, Yang [1 ]
机构
[1] Inst Adv Study, Dept Math, Princeton, NJ 08540 USA
基金
英国工程与自然科学研究理事会;
关键词
LIMITS; MANIFOLDS;
D O I
10.4310/jdg/1615487004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop some techniques to study the adiabatic limiting behaviour of Calabi-Yau metrics on the total space of a fibration, and obtain strong control near the singular fibres by imposing restrictions on the singularity types. We prove a uniform lower bound on the metric up to the singular fibre, under fairly general hypotheses. Assuming a result in pluripotential theory, we prove a uniform fibre diameter bound for a Lefschetz K3 fibred Calabi-Yau 3-fold, which reduces the study of the collapsing metric to a locally non-collapsed situation, and we identify the Gromov-Hausdorff limit of the rescaled neighbourhood of the singular fibre.
引用
收藏
页码:451 / 483
页数:33
相关论文
共 50 条
  • [31] On Calabi-Yau supermanifolds
    Rocek, Martin
    Wadhwa, Neal
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 9 (02) : 315 - 320
  • [32] Octonionic Calabi-Yau Theorem
    Alesker, Semyon
    Gordon, Peter V.
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (09)
  • [33] Primitive Calabi-Yau threefolds
    Gross, M
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1997, 45 (02) : 288 - 318
  • [34] Special Lagrangian torus fibrations of complete intersection Calabi-Yau manifolds: A geometric conjecture
    Morrison, David R.
    Plesser, M. Ronen
    NUCLEAR PHYSICS B, 2015, 898 : 751 - 770
  • [35] Calabi-Yau manifolds from pairs of non-compact Calabi-Yau manifolds
    Nam-Hoon Lee
    Journal of High Energy Physics, 2010
  • [36] Deformed Calabi-Yau completions
    Keller, Bernhard
    Van den Bergh, Michel
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 654 : 125 - 180
  • [37] CALABI-YAU 3-FOLDS OF BORCEA-VOISIN TYPE AND ELLIPTIC FIBRATIONS
    Cattaneo, Andrea
    Garbagnati, Alice
    TOHOKU MATHEMATICAL JOURNAL, 2016, 68 (04) : 515 - 558
  • [38] POSITIVITY OF DIRECT IMAGES OF FIBERWISE RICCI-FLAT METRICS ON CALABI-YAU FIBRATIONS
    Braun, Matthias
    Choi, Young-Jun
    Schumacher, Georg
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (06) : 4267 - 4292
  • [39] Calabi-Yau algebras and superpotentials
    Van den Bergh, Michel
    SELECTA MATHEMATICA-NEW SERIES, 2015, 21 (02): : 555 - 603
  • [40] ON A GENERALIZED CALABI-YAU EQUATION
    Wang, Hongyu
    Zhu, Peng
    ANNALES DE L INSTITUT FOURIER, 2010, 60 (05) : 1595 - 1615