Reach set computation using optimal control

被引:0
|
作者
Varaiya, P [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Reach set computation is a basic component of many verification and control synthesis procedures. Effective computation schemes are available for discrete systems described by finite state machines and continuous-variable systems described by linear differential inequalities. This paper suggests an approach based on the Pontryagin maximum principle of optimal control theory. The approach is elaborated for linear systems, and it may prove useful for more general continuous-variable systems.
引用
收藏
页码:323 / 331
页数:3
相关论文
共 50 条
  • [41] A Variation Evolving Method for Optimal Control Computation
    Zhang, Sheng
    Yong, En-Mi
    Qian, Wei-Qi
    He, Kai-Feng
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 183 (01) : 246 - 270
  • [42] Real-time computation of optimal control
    Aleksandrov, V. M.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (10) : 1351 - 1372
  • [43] Symbolic computation of variational symmetries in optimal control
    Gouveia, Paulo D. F.
    Torres, Delfim F. M.
    Rocha, Eugenio A. M.
    CONTROL AND CYBERNETICS, 2006, 35 (04): : 831 - 849
  • [44] Ill-conditioning in optimal control computation
    Benyah, F
    Jennings, LS
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL COLLOQUIUM ON DIFFERENTIAL EQUATIONS, 1998, : 81 - 88
  • [45] An optimal control approach to optical flow computation
    Borzì, A
    Ito, K
    Kunisch, K
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 40 (1-2) : 231 - 240
  • [47] Optimal control computation to account for eccentric movement
    Jennings, LS
    Wong, KH
    Teo, KL
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1996, 38 : 182 - 193
  • [48] Finite Set Control Transcription for Optimal Control Applications
    Stanton, Stuart A.
    Marchand, Belinda G.
    JOURNAL OF SPACECRAFT AND ROCKETS, 2010, 47 (03) : 457 - 471
  • [49] FINITE SET CONTROL TRANSCRIPTION FOR OPTIMAL CONTROL APPLICATIONS
    Stanton, Stuart A.
    Marchand, Belinda G.
    SPACEFLIGHT MECHANICS 2009, VOL 134, PTS I-III, 2009, 134 : 307 - +
  • [50] Computation of sub-optimal feedback control for time - Delayed optimal control problems
    Peter, G
    Wong, KH
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2001, 8 (01): : 1 - 14