Reach set computation using optimal control

被引:0
|
作者
Varaiya, P [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Reach set computation is a basic component of many verification and control synthesis procedures. Effective computation schemes are available for discrete systems described by finite state machines and continuous-variable systems described by linear differential inequalities. This paper suggests an approach based on the Pontryagin maximum principle of optimal control theory. The approach is elaborated for linear systems, and it may prove useful for more general continuous-variable systems.
引用
收藏
页码:323 / 331
页数:3
相关论文
共 50 条
  • [21] TIME-OPTIMAL AND SPACE-OPTIMAL CONTOUR COMPUTATION FOR A SET OF RECTANGLES
    WIDMAYER, P
    WOOD, D
    INFORMATION PROCESSING LETTERS, 1987, 24 (05) : 335 - 338
  • [22] ON THE OPTIMAL CONTROL COMPUTATION OF LINEAR SYSTEMS
    Tjahjana, H.
    Pranoto, I.
    Muhammad, H.
    Naiborhu, J.
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2009, 15 (01) : 13 - 20
  • [23] Global impulsive optimal control computation
    Wu, C. Z.
    Teo, K. L.
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2006, 2 (04) : 435 - 450
  • [24] Locally Optimal Reach Set Over-approximation for Nonlinear Systems
    Fan, Chuchu
    Kapinski, James
    Jin, Xiaoqing
    Mitra, Sayan
    2016 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE (EMSOFT), 2016,
  • [25] Extending the reach of computation
    Escultura, E. E.
    APPLIED MATHEMATICS LETTERS, 2008, 21 (10) : 1074 - 1081
  • [26] Just Scratching the Surface: Partial Exploration of Initial Values in Reach-Set Computation
    Xue, Bai
    Fraenzle, Martin
    Mosaad, Peter Nazier
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [27] L(2)-gain computation for nonlinear systems using optimal control algorithms
    Imae, J
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 547 - 551
  • [28] Computation of feedback control for time optimal state transfer using Groebner basis
    Patil, Deepak
    Mulla, Ameer
    Chakraborty, Debraj
    Pillai, Harish
    SYSTEMS & CONTROL LETTERS, 2015, 79 : 1 - 7
  • [29] Computation of optimal control trajectories using Chebyshev polynomials: Parameterization, and quadratic program
    Jaddu, H
    Shimemura, E
    OPTIMAL CONTROL APPLICATIONS & METHODS, 1999, 20 (01): : 21 - 42
  • [30] A SET OF EXPERIMENTS IN OPTIMAL AND PREDICTIVE CONTROL
    MORENO, L
    ACOSTA, L
    ICHASO, JL
    SANCHEZ, JL
    PINEIRO, JD
    INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATION, 1993, 30 (03) : 236 - 253