SOME REMARKS ON FACTORIAL QUOTIENT RINGS

被引:0
|
作者
Dalzotto, Giorgio
机构
[1] Dipartimento di Matematica, Degli Studi di Pisa
关键词
Factoriality; grading; unique factorization; CONSTRUCTION;
D O I
10.1216/RMJ-2009-39-4-1145
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a Weil divisor with rational coefficients on an integral, normal, projective scheme X defined over a field K. Assume that ND is an ample Cartier divisor for some N > 0. Then A(X,D) = circle plus(n)>= 0H(0)(X,O(X)(nD))T(n) subset of K(X)[T] is a finitely generated, integrally closed, graded K-algebra. Since factorial domains are integrally closed, it is natural to ask for criteria which imply the factoriality of A (X, D). In 1984 Robbiano found the shape of the divisor D such that A(X, D) is factorial, in the case Cl (X) = Z. The main result in this paper is Theorem 29 where we give a characterization of such factorial rings valid over a field of any characteristic. In the last part of the paper we Study how the task of factorizing an element of a UFD, given as a quotient R/I, can be achieved by simply calculating inside the ring R.
引用
收藏
页码:1145 / 1172
页数:28
相关论文
共 50 条
  • [1] Some Identities in Quotient Rings
    EL Hamdaoui, Mohammadi
    Boua, Abdelkarim
    Sandhu, Gurninder S.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41 : 19 - 19
  • [2] Quotient rings satisfying some identities
    El Hamdaoui, Mohammadi
    Boua, Abdelkarim
    CUBO-A MATHEMATICAL JOURNAL, 2023, 25 (03): : 455 - 465
  • [3] SOME EXAMPLES OF WEAKLY FACTORIAL RINGS
    Chang, Gyu Whan
    KOREAN JOURNAL OF MATHEMATICS, 2013, 21 (03): : 319 - 323
  • [4] SOME REMARKS ON SIMPLE RINGS
    HORVATH, E
    PUCZYLOWSKI, ER
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1991, 5A (01): : 83 - 87
  • [5] SOME REMARKS ON NASH RINGS
    RAIMONDO, M
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1984, 14 (04) : 921 - 922
  • [6] SOME REMARKS ON BAER RINGS
    JANOWITZ, MF
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 502 - &
  • [7] SOME REMARKS ON AFFINE RINGS
    MONTGOMERY, S
    SMALL, LW
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 98 (04) : 537 - 544
  • [8] SOME REMARKS ON EUCLID RINGS
    NAGATA, M
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1985, 25 (03): : 421 - 422
  • [9] SOME REMARKS ON THE COMMUTATIVITY OF RINGS
    GUPTA, V
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1980, 36 (3-4): : 233 - 236
  • [10] Some remarks on sets with small quotient set
    Shkredov, I. D.
    SBORNIK MATHEMATICS, 2017, 208 (12) : 1854 - 1868