SOME REMARKS ON FACTORIAL QUOTIENT RINGS

被引:0
|
作者
Dalzotto, Giorgio
机构
[1] Dipartimento di Matematica, Degli Studi di Pisa
关键词
Factoriality; grading; unique factorization; CONSTRUCTION;
D O I
10.1216/RMJ-2009-39-4-1145
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a Weil divisor with rational coefficients on an integral, normal, projective scheme X defined over a field K. Assume that ND is an ample Cartier divisor for some N > 0. Then A(X,D) = circle plus(n)>= 0H(0)(X,O(X)(nD))T(n) subset of K(X)[T] is a finitely generated, integrally closed, graded K-algebra. Since factorial domains are integrally closed, it is natural to ask for criteria which imply the factoriality of A (X, D). In 1984 Robbiano found the shape of the divisor D such that A(X, D) is factorial, in the case Cl (X) = Z. The main result in this paper is Theorem 29 where we give a characterization of such factorial rings valid over a field of any characteristic. In the last part of the paper we Study how the task of factorizing an element of a UFD, given as a quotient R/I, can be achieved by simply calculating inside the ring R.
引用
收藏
页码:1145 / 1172
页数:28
相关论文
共 50 条
  • [21] A QUADRATIC FACTORIAL QUOTIENT
    LOSSERS, OP
    AMERICAN MATHEMATICAL MONTHLY, 1987, 94 (10): : 1004 - 1005
  • [22] SOME PROPERTIES OF ANALYTICALLY IRREDUCIBLE GEOMETRIC QUOTIENT RINGS
    NORTHCOTT, DG
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1951, 47 (04): : 662 - 667
  • [23] QUOTIENT RINGS
    DESQ, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 272 (03): : 199 - &
  • [24] Quotient Rings
    Kornilowicz, Artur
    FORMALIZED MATHEMATICS, 2005, 13 (04): : 573 - 576
  • [25] QUOTIENT RINGS OF GROUP RINGS
    SMITH, PF
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1971, 3 (MAY): : 645 - &
  • [26] ON QUOTIENT RINGS IN ALTERNATIVE RINGS
    Artacho Cardenas, Laura
    Gomez Lozano, Miguel
    Ruiz Calvino, Jorge
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (12) : 5464 - 5473
  • [27] QUOTIENT RINGS OF GROUP RINGS
    BROWN, KA
    COMPOSITIO MATHEMATICA, 1978, 36 (03) : 243 - 254
  • [28] SOME REMARKS ON RADICALS OF RINGS WITH CHAIN CONDITIONS
    GARDNER, BJ
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1974, 25 (3-4): : 263 - 268
  • [29] Some remarks on residually algebraic pairs of rings
    M. Ben Nasr
    Archiv der Mathematik, 2002, 78 : 362 - 368
  • [30] SOME REMARKS ON QUASI-FROBENIUS RINGS
    POLLINGHER, A
    ZAKS, A
    JOURNAL OF ALGEBRA, 1968, 10 (02) : 231 - +