Numerical investigation on the capacity and efficiency of a deep enhanced U-tube borehole heat exchanger system for building heating

被引:53
|
作者
Chen, Chaofan [1 ,2 ]
Cai, Wanlong [1 ,3 ]
Naumov, Dmitri [1 ,4 ]
Tu, Kun [5 ,6 ]
Zhou, Hongwei [6 ]
Zhang, Yuping [3 ,7 ]
Kolditz, Olaf [1 ,2 ]
Shao, Haibing [1 ]
机构
[1] UFZ Helmholtz Ctr Environm Res, Permoserstr 15, D-04318 Leipzig, Germany
[2] Tech Univ Dresden, Appl Environm Syst Anal, D-01069 Dresden, Germany
[3] Xi An Jiao Tong Univ, Sch Human Settlements & Civil Engn, Xian 710049, Shaanxi, Peoples R China
[4] Freiberg Univ Min & Technol, D-09599 Freiberg, Germany
[5] Univ Calif Riverside, Dept Environm Sci, Riverside, CA 92521 USA
[6] China Univ Min & Technol Beijing, Beijing 100083, Peoples R China
[7] Minist Nat Resources, Key Lab Coal Resources Explorat & Comprehens Util, Xian 710021, Shaanxi, Peoples R China
关键词
Geothermal energy; Building heating; Enhanced U-tube borehole heat exchanger; Long-term thermal performance; Efficiency; THERMAL PERFORMANCE; BEND PIPE; SUSTAINABILITY; EXTRACTION; EQUATIONS; MODEL; FLUID; FIELD; FLOW; MASS;
D O I
10.1016/j.renene.2021.01.033
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Deep geothermal energy has become widely exploited in recent years through the use of closed loop systems for building heating. Intended to meet high heating demand in densely populated neighbourhoods, an enhanced U-tube borehole heat exchanger (EUBHE) system, in which a deviated deep borehole is connected with another vertical one to form a closed loop, is introduced in this work. For capacity and efficiency analysis of applying EUBHE systems to extract deep geothermal energy, a 3D numerical model is implemented and established based on the OpenGeoSys software. Through evaluation by thermal performance tests and thermal response tests on the EUBHE system, the maximum sustainable heat extraction rate is found to be 1.2 MW in a single heating season and 1.1 MW in 10 years, which can provide heating to more than 35,000 m(2) of residential buildings located in northern China. Moreover, the 10-year system thermal performance and efficiency are evaluated when coupled with a ground source heat pump (GSHP), and compared with the two deep borehole heat exchanger (2-DBHE) array system that has the same total borehole length as the EUBHE system. Results show that GSHP-coupled EUBHE system is more efficient than the 2-DBHE array system, as it consumes 27% less electricity. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:557 / 572
页数:16
相关论文
共 50 条
  • [21] Numerical study on the heat performance of enhanced coaxial borehole heat exchanger and double U borehole heat exchanger
    Chen, Ke
    Zheng, Jia
    Li, Juan
    Shao, Jingli
    Zhang, Qiulan
    APPLIED THERMAL ENGINEERING, 2022, 203
  • [22] Performance Optimization of Double U-Tube Borehole Heat Exchanger for Thermal Energy Storage
    Kerme, Esa Dube
    Fung, Alan S.
    Saghir, M. Ziad
    ENERGY STORAGE, 2025, 7 (02)
  • [23] Numerical investigations on optimised shell designs of a U-tube heat exchanger
    Abdelmoety, Ahmed Mahmoud
    Muhieldeen, Mohammed W.
    Tey, Wah Yen
    Yin, Xin
    Beit, Nour Eldin
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2024, 47
  • [24] Numerical simulation analysis on vertical U-tube underground heat exchanger
    Lian, Xiaoxin
    Liu, Jinxiang
    Chen, Xiaochun
    Li, Ying
    Ding, Gao
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2012, 33 (01): : 48 - 55
  • [25] A numerical study on the intermittent operation of u-tube and coaxial borehole heat exchangers
    Harris, B. E.
    Lightstone, M. F.
    Reitsma, S.
    Cotton, J. S.
    GEOTHERMICS, 2024, 121
  • [26] Thermal performance and economic evaluation of double U-tube borehole heat exchanger with three different borehole diameters
    Luo, Jin
    Rohn, Joachim
    Bayer, Manfred
    Priess, Anna
    ENERGY AND BUILDINGS, 2013, 67 : 217 - 224
  • [27] Numerical Simulation and Analysis for the U-tube Heat Exchanger of Ground Source Heat Pump
    Chang Zhen
    Guo Min
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 8713 - 8717
  • [28] Heat transfer analysis of single and double U-tube borehole heat exchanger with two independent circuits
    Kerme, Esa Dube
    Fung, Alan S.
    JOURNAL OF ENERGY STORAGE, 2021, 43
  • [29] Numerical simulation of heat transfer of soil around U-tube undergroud heat exchanger
    Zhang, Yu-Feng
    Chen, Cheng-Min
    Nie, Jin-Zhe
    Zhou, Xiao-Zhu
    Hu, Xiao-Wei
    Ma, Hong-Ting
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2010, 43 (08): : 717 - 721
  • [30] Numerical simulation and experimental validation of a vertical U-tube ground heat exchanger
    Gao, Yike
    Gao, Yan
    Yu, Yong
    Lin, Xinxing
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 709 - +