Parametric and non-parametric prediction intervals based phase II control charts for repeated bioassay data

被引:5
|
作者
Hothorn, L. A. [1 ]
Gerhard, D. [1 ]
Hofmann, M. [2 ]
机构
[1] Leibniz Univ Hannover, Inst Biostat, D-30419 Hannover, Germany
[2] Novartis Pharma AG, Biotechnol Dev, ARD, CH-4057 Basel, Switzerland
关键词
Statistical quality control; Phase II control charts; Non-parametric control charts; Bioassay; LIMITS;
D O I
10.1016/j.biologicals.2009.07.001
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Quality control for repeated bioassay runs can be performed by phase H control charts, well-known from industrial quality control. The value of interest is the potency, of which a single value per run is available. Parametric and non-parametric prediction intervals are described to estimate quality control intervals for future re-test runs. Violations against the normal distribution occur in real data frequently, particularly outliers. The non-parametric prediction intervals are limited to not too small sample sizes in both the historical and future sampling phases. Therefore, robust prediction intervals based on winsorization are proposed. R-functions for all prediction intervals are provided. (C) 2009 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:323 / 330
页数:8
相关论文
共 50 条
  • [41] On the Non-parametric Prediction of Conditionally Stationary Sequences
    S. Caires
    J. A. Ferreira
    Statistical Inference for Stochastic Processes, 2005, 8 (2) : 151 - 184
  • [42] Non-Parametric Prediction in a Limit Order Book
    Palguna, Deepan
    Pollak, Ilya
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 1139 - 1139
  • [43] Prediction of site factors by a non-parametric approach
    Perus, Iztok
    Fajfar, Peter
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2014, 43 (12): : 1743 - 1761
  • [44] ON THE NON-PARAMETRIC PREDICTION OF ALEATORY VARIABLES AND MEASUREMENTS
    BOSQ, D
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 64 (04): : 541 - 553
  • [45] Parametric and Non-parametric Bayesian Imputation for Right Censored Survival Data
    Moghaddam, Shirin
    Newell, John
    Hinde, John
    DEVELOPMENTS IN STATISTICAL MODELLING, IWSM 2024, 2024, : 153 - 158
  • [46] Parametric and non-parametric statistical analysis of DT-MRI data
    Pajevic, S
    Basser, PJ
    JOURNAL OF MAGNETIC RESONANCE, 2003, 161 (01) : 1 - 14
  • [47] Robust non-parametric tests for imaging data based on data depth
    Lopez-Pintado, Sara
    Wrobel, Julia
    STAT, 2017, 6 (01): : 405 - 419
  • [48] PARAMETRIC AND NON-PARAMETRIC FOREST BIOMASS ESTIMATION FROM POLINSAR DATA
    Neumann, Maxim
    Saatchi, Sassan S.
    Ulander, Lars M. H.
    Fransson, Johan E. S.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 420 - 423
  • [49] ESTIMATED NON-PARAMETRIC AND SEMI-PARAMETRIC MODEL FOR LONGITUDINAL DATA
    AL-Adilee, Reem Tallal Kamil
    Aboudi, Emad Hazim
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 : 1963 - 1972
  • [50] Robust control of identified models with mixed parametric and non-parametric uncertainties
    Ninness, B
    EUROPEAN JOURNAL OF CONTROL, 2003, 9 (04) : 381 - 383