Parametric and non-parametric prediction intervals based phase II control charts for repeated bioassay data

被引:5
|
作者
Hothorn, L. A. [1 ]
Gerhard, D. [1 ]
Hofmann, M. [2 ]
机构
[1] Leibniz Univ Hannover, Inst Biostat, D-30419 Hannover, Germany
[2] Novartis Pharma AG, Biotechnol Dev, ARD, CH-4057 Basel, Switzerland
关键词
Statistical quality control; Phase II control charts; Non-parametric control charts; Bioassay; LIMITS;
D O I
10.1016/j.biologicals.2009.07.001
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Quality control for repeated bioassay runs can be performed by phase H control charts, well-known from industrial quality control. The value of interest is the potency, of which a single value per run is available. Parametric and non-parametric prediction intervals are described to estimate quality control intervals for future re-test runs. Violations against the normal distribution occur in real data frequently, particularly outliers. The non-parametric prediction intervals are limited to not too small sample sizes in both the historical and future sampling phases. Therefore, robust prediction intervals based on winsorization are proposed. R-functions for all prediction intervals are provided. (C) 2009 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:323 / 330
页数:8
相关论文
共 50 条
  • [21] Tertiary Control Based on Non-Parametric Model Prediction for DC Microgrid Cluster
    Qin, Qiangdong
    Liu, Sucheng
    Fu, Wenke
    6TH IEEE INTERNATIONAL CONFERENCE ON PREDICTIVE CONTROL OF ELECTRICAL DRIVES AND POWER ELECTRONICS (PRECEDE 2021), 2021, : 798 - 803
  • [22] Non-parametric confidence intervals for shift effects based on paired ranks
    Munzel, U
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2006, 76 (09) : 765 - 772
  • [23] Prediction of ITQ-21 zeolite phase crystallinity: Parametric versus non-parametric strategies
    Baumes, Laurent A.
    Moliner, Manuel
    Corma, Avelino
    QSAR & COMBINATORIAL SCIENCE, 2007, 26 (02): : 255 - 272
  • [24] Confidence intervals for lognormal regression and a non-parametric alternative
    Withers, Christopher S.
    Nadarajah, Saralees
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (05) : 878 - 893
  • [25] Adaptive simultaneous confidence intervals in non-parametric estimation
    Tribouley, K
    STATISTICS & PROBABILITY LETTERS, 2004, 69 (01) : 37 - 51
  • [26] Non-parametric confidence intervals of instantaneous forward rates
    Carriere, JF
    INSURANCE MATHEMATICS & ECONOMICS, 2000, 26 (2-3): : 193 - 202
  • [27] Inequality measurement with grouped data: Parametric and non-parametric methods
    Jorda, Vanesa
    Sarabia, Jose Maria
    Jantti, Markus
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2021, 184 (03) : 964 - 984
  • [28] Parametric and non-parametric Statistical Process Control in a dairy industry
    Marra da Silva Ribeiro, Luiz Henrique
    de Araujo, Tatiane Gomes
    Ferreira, Eric Batista
    Zamboni, Jovelino Elias
    JOURNAL OF CANDIDO TOSTES DAIRY INSTITUTE, 2018, 73 (03): : 112 - 121
  • [29] A comparison of Shewhart individuals control charts based on normal, non-parametric, and extreme-value theory
    Vermaat, MB
    Ion, RA
    Does, RJMM
    Klaassen, CAJ
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2003, 19 (04) : 337 - 353
  • [30] Adaptive Control of Nonlinear Systems: Parametric and Non-Parametric Approach
    Hozefa, J.
    Shadab, S.
    Revati, G.
    Wagh, S. R.
    Singh, N. M.
    2021 29TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2021, : 1007 - 1012