Mean-field avalanche size exponent for sandpiles on Galton-Watson trees

被引:1
|
作者
Jarai, Antal A. [1 ]
Ruszel, Wioletta M. [2 ,3 ]
Saada, Ellen [4 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Delft Univ Technol, Delft Inst Appl Math, Van Mourik Broekmanweg 6, NL-2628 XE Delft, Netherlands
[3] Univ Utrecht, Math Inst, Budapestlaan 6, NL-3584 CD Utrecht, Netherlands
[4] Univ Paris 05, Lab MAP5, CNRS, UMR 8145, 45 Rue St Peres, F-75270 Paris 06, France
关键词
Abelian sandpile; Uniform spanning tree; Conductance martingale; Wired spanning forest; INFINITE VOLUME LIMIT; MODEL;
D O I
10.1007/s00440-019-00951-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that in Abelian sandpiles on infinite Galton-Watson trees, the probability that the total avalanche has more than t topplings decays as t(-1/2). We prove both quenched and annealed bounds, under suitable moment conditions. Our proofs are based on an analysis of the conductance martingale of Morris (Probab Theory Relat Fields 125:259-265, 2003), thatwas previously used by Lyons et al. (Electron J Probab 13(58):1702-1725, 2008) to study uniform spanning forests on Z(d), d >= 3, and other transient graphs.
引用
收藏
页码:369 / 396
页数:28
相关论文
共 50 条
  • [21] VERY FAT GEOMETRIC GALTON-WATSON TREES
    Abraham, Romain
    Bouaziz, Aymen
    Delmas, Jean-Francois
    ESAIM-PROBABILITY AND STATISTICS, 2020, 24 : 294 - 314
  • [22] A note on the maximal outdegrees of Galton-Watson trees
    He, Xin
    STATISTICS & PROBABILITY LETTERS, 2016, 109 : 1 - 6
  • [23] Biased random walks on Galton-Watson trees
    Lyons, R
    Pemantle, R
    Peres, Y
    PROBABILITY THEORY AND RELATED FIELDS, 1996, 106 (02) : 249 - 264
  • [24] Invariance and attraction properties of Galton-Watson trees
    Kovchegov, Yevgeniy
    Zaliapin, Ilya
    BERNOULLI, 2021, 27 (03) : 1789 - 1823
  • [25] Local convergence of critical Galton-Watson trees
    Bouaziz, Aymen
    JOURNAL OF APPLIED PROBABILITY, 2024, 61 (03) : 851 - 857
  • [26] Penalization of Galton-Watson Trees with Marked Vertices
    Romain, Abraham
    Sonia, Boulal
    Pierre, Debs
    JOURNAL OF THEORETICAL PROBABILITY, 2024, 37 (04) : 3688 - 3724
  • [27] Biased Random Walks on Galton-Watson Trees
    Shi, Zhan
    BRANCHING RANDOM WALKS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLII - 2012, 2015, 2151 : 107 - 114
  • [28] Independent random cascades on Galton-Watson trees
    Burd, GA
    Waymire, EC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (09) : 2753 - 2761
  • [29] Recursive functions on conditional Galton-Watson trees
    Broutin, Nicolas
    Devroye, Luc
    Fraiman, Nicolas
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (02) : 304 - 316
  • [30] Extreme order statistics on Galton-Watson trees
    Pakes, AG
    METRIKA, 1998, 47 (02) : 95 - 117