Mean-field avalanche size exponent for sandpiles on Galton-Watson trees

被引:1
|
作者
Jarai, Antal A. [1 ]
Ruszel, Wioletta M. [2 ,3 ]
Saada, Ellen [4 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Delft Univ Technol, Delft Inst Appl Math, Van Mourik Broekmanweg 6, NL-2628 XE Delft, Netherlands
[3] Univ Utrecht, Math Inst, Budapestlaan 6, NL-3584 CD Utrecht, Netherlands
[4] Univ Paris 05, Lab MAP5, CNRS, UMR 8145, 45 Rue St Peres, F-75270 Paris 06, France
关键词
Abelian sandpile; Uniform spanning tree; Conductance martingale; Wired spanning forest; INFINITE VOLUME LIMIT; MODEL;
D O I
10.1007/s00440-019-00951-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that in Abelian sandpiles on infinite Galton-Watson trees, the probability that the total avalanche has more than t topplings decays as t(-1/2). We prove both quenched and annealed bounds, under suitable moment conditions. Our proofs are based on an analysis of the conductance martingale of Morris (Probab Theory Relat Fields 125:259-265, 2003), thatwas previously used by Lyons et al. (Electron J Probab 13(58):1702-1725, 2008) to study uniform spanning forests on Z(d), d >= 3, and other transient graphs.
引用
收藏
页码:369 / 396
页数:28
相关论文
共 50 条
  • [11] Bootstrap percolation on Galton-Watson trees
    Bollobas, Bela
    Gunderson, Karen
    Holmgren, Cecilia
    Janson, Svante
    Przykucki, Michal
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 27
  • [12] Root estimation in Galton-Watson trees
    Brandenberger, Anna M.
    Devroye, Luc
    Goh, Marcel K.
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (03) : 520 - 542
  • [13] β-coalescents and stable Galton-Watson trees
    Abraham, Romain
    Delmas, Jean-Francois
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2015, 12 (01): : 451 - 476
  • [14] GALTON-WATSON TREES WITH THE SAME MEAN HAVE THE SAME POLAR SETS
    PEMANTLE, R
    PERES, Y
    ANNALS OF PROBABILITY, 1995, 23 (03): : 1102 - 1124
  • [15] RANDOM INTERLACEMENTS ON GALTON-WATSON TREES
    Tassy, Martin
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2010, 15 : 562 - 571
  • [16] GALTON-WATSON PROCESS WITH INFINITE MEAN
    DARLING, DA
    JOURNAL OF APPLIED PROBABILITY, 1970, 7 (02) : 455 - &
  • [17] GALTON-WATSON PROCESS WITH MEAN 1
    SENETA, E
    JOURNAL OF APPLIED PROBABILITY, 1967, 4 (03) : 489 - &
  • [18] Noncrossing trees are almost conditioned Galton-Watson trees
    Marckert, JF
    Panholzer, A
    RANDOM STRUCTURES & ALGORITHMS, 2002, 20 (01) : 115 - 125
  • [19] ON THE NUMBER OF TREES OF A GIVEN SIZE IN A GALTON-WATSON FOREST IN THE CRITICAL CASE*
    Khvorostyanskaya, E. V.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2023, 68 (01) : 62 - 76
  • [20] Extreme order statistics on Galton-Watson trees
    Anthony G. Pakes
    Metrika, 1998, 47 : 95 - 117