A scheme for spatial wavefunction teleportation in three dimensions

被引:0
|
作者
Akhavan, O.
Rezakhani, A. T.
Golshani, M.
机构
[1] Sharif Univ Technol, Dept Phys, Tehran, Iran
[2] Univ Calgary, Inst Quantum Informat Sci, Calgary, AB T2N 1N4, Canada
[3] Inst Sci Interchange, I-10133 Turin, Italy
[4] Inst Studies Theoret Phys & Math, Tehran, Iran
关键词
entanglement; teleportation; spatial wave function;
D O I
10.1142/S0219749906002237
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a theoretical scheme for teleportation of a general wave function of a quantum object. In principle, this protocol provides teleportation of discrete N-level spatial states of an object with various degrees of freedom, e.g. spin, in ordinary three-dimensional space. All necessary Bell states and their corresponding operators to measure and reconstruct the initial state are represented.
引用
收藏
页码:781 / 790
页数:10
相关论文
共 50 条
  • [21] New scheme of quantum teleportation
    Kossakowski, A.
    Ohya, M.
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2007, 10 (03) : 411 - 420
  • [22] Quantification of entanglement of teleportation in arbitrary dimensions
    Sk Sazim
    Satyabrata Adhikari
    Subhashish Banerjee
    Tanumoy Pramanik
    Quantum Information Processing, 2014, 13 : 863 - 880
  • [24] A gridfree scheme for simulation of natural convection in three dimensions
    Collins, James R.
    Bernard, Peter S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 369 : 209 - 224
  • [25] A New Remote User Authentication Scheme on Three Dimensions
    Wu, Wei-Chen
    ADVANCES IN MECHATRONICS, AUTOMATION AND APPLIED INFORMATION TECHNOLOGIES, PTS 1 AND 2, 2014, 846-847 : 1707 - 1710
  • [26] Quantification of entanglement of teleportation in arbitrary dimensions
    Sazim, Sk
    Adhikari, Satyabrata
    Banerjee, Subhashish
    Pramanik, Tanumoy
    QUANTUM INFORMATION PROCESSING, 2014, 13 (04) : 863 - 880
  • [27] Fiber deposition models in two and three spatial dimensions
    Provatas, N
    Haataja, M
    Asikainen, J
    Majaniemi, S
    Alava, M
    Ala-Nissila, T
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2000, 165 (1-3) : 209 - 229
  • [28] Integrable nonlinear evolution equations in three spatial dimensions
    Fokas, A. S.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2263):
  • [29] Classification of topological insulators and superconductors in three spatial dimensions
    Schnyder, Andreas P.
    Ryu, Shinsei
    Furusaki, Akira
    Ludwig, Andreas W. W.
    PHYSICAL REVIEW B, 2008, 78 (19)
  • [30] Hyperboloidal evolution of test fields in three spatial dimensions
    Zenginoglu, Anil
    Kidder, Lawrence E.
    PHYSICAL REVIEW D, 2010, 81 (12):