Hyperboloidal evolution of test fields in three spatial dimensions

被引:20
|
作者
Zenginoglu, Anil [1 ]
Kidder, Lawrence E. [2 ]
机构
[1] Jagiellonian Univ, M Smoluchowski Inst Phys, Krakow, Poland
[2] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA
来源
PHYSICAL REVIEW D | 2010年 / 81卷 / 12期
关键词
NUMERICAL RELATIVITY; BOUNDARY-CONDITIONS; SPACE-TIME; EQUATIONS; COLLAPSE;
D O I
10.1103/PhysRevD.81.124010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the numerical implementation of a clean solution to the outer boundary and radiation extraction problems within the 3 + 1 formalism for hyperbolic partial differential equations on a given background. Our approach is based on compactification at null infinity in hyperboloidal scri fixing coordinates. We report numerical tests for the particular example of a scalar wave equation on Minkowski and Schwarzschild backgrounds. We address issues related to the implementation of the hyperboloidal approach for the Einstein equations, such as nonlinear source functions, matching, and evaluation of formally singular terms at null infinity.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Integrable nonlinear evolution equations in three spatial dimensions
    Fokas, A. S.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2263):
  • [2] Spherical symmetry as a test case for unconstrained hyperboloidal evolution
    Vano-Vinuales, Alex
    Husa, Sascha
    Hilditch, David
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (17)
  • [3] Hyperboloidal data and evolution
    Husa, S.
    Schneemann, C.
    Vogel, T.
    Zenginoglu, A.
    CENTURY OF RELATIVITY PHYSICS, 2006, 841 : 306 - +
  • [4] Magnetic Fields in Three Dimensions
    Houde, Martin
    ASTRONOMICAL POLARIMETRY 2008: SCIENCE FROM SMALL TO LARGE TELESCOPES, 2011, 449 : 213 - 224
  • [5] Spherical symmetry as a test case for unconstrained hyperboloidal evolution II: gauge conditions
    Vano-Vinuales, Alex
    Husa, Sascha
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (04)
  • [6] Hyperboloidal evolution with the Einstein equations
    Zenginoglu, Anil
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (19)
  • [7] The power of three spatial dimensions
    Jia Hui Khoo
    Helen L. Miller
    Nature Reviews Microbiology, 2019, 17 : 591 - 591
  • [8] The power of three spatial dimensions
    Khoo, Jia Hui
    Miller, Helen L.
    NATURE REVIEWS MICROBIOLOGY, 2019, 17 (10) : 591 - 591
  • [9] Hyperboloidal Einstein-matter evolution and tails for scalar and Yang-Mills fields
    Rinne, Oliver
    Moncrief, Vincent
    CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (09)
  • [10] Spatial learning by mice in three dimensions
    Wilson, Jonathan J.
    Harding, Elizabeth
    Fortier, Mathilde
    James, Benjamin
    Donnett, Megan
    Kerslake, Alasdair
    O'Leary, Alice
    Zhang, Ningyu
    Jeffery, Kate
    BEHAVIOURAL BRAIN RESEARCH, 2015, 289 : 125 - 132