The power of three spatial dimensions

被引:0
|
作者
Jia Hui Khoo
Helen L. Miller
机构
[1] University of Oxford,Department of Biochemistry
[2] University of Oxford,Clarendon Laboratory, Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This month’s Under the Lens discusses how 3D fluorescence microscopy techniques are furthering the study of dynamic spatial organization and confinement in bacterial cells.
引用
收藏
页码:591 / 591
相关论文
共 50 条
  • [1] The power of three spatial dimensions
    Khoo, Jia Hui
    Miller, Helen L.
    NATURE REVIEWS MICROBIOLOGY, 2019, 17 (10) : 591 - 591
  • [2] Spatial learning by mice in three dimensions
    Wilson, Jonathan J.
    Harding, Elizabeth
    Fortier, Mathilde
    James, Benjamin
    Donnett, Megan
    Kerslake, Alasdair
    O'Leary, Alice
    Zhang, Ningyu
    Jeffery, Kate
    BEHAVIOURAL BRAIN RESEARCH, 2015, 289 : 125 - 132
  • [3] Lattice Glass Model in Three Spatial Dimensions
    Nishikawa, Yoshihiko
    Hukushima, Koji
    PHYSICAL REVIEW LETTERS, 2020, 125 (06)
  • [4] Evaluating spatial memory in two and three dimensions
    Cockburn, A
    McKenzie, B
    INTERNATIONAL JOURNAL OF HUMAN-COMPUTER STUDIES, 2004, 61 (03) : 359 - 373
  • [5] A scheme for spatial wavefunction teleportation in three dimensions
    Akhavan, O.
    Rezakhani, A. T.
    Golshani, M.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (05) : 781 - 790
  • [6] Extension of the spatial PDI model to three dimensions
    OBrien, F
    PERCEPTUAL AND MOTOR SKILLS, 1997, 84 (01) : 176 - 178
  • [7] Fiber deposition models in two and three spatial dimensions
    Provatas, N
    Haataja, M
    Asikainen, J
    Majaniemi, S
    Alava, M
    Ala-Nissila, T
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2000, 165 (1-3) : 209 - 229
  • [8] Integrable nonlinear evolution equations in three spatial dimensions
    Fokas, A. S.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2263):
  • [9] Classification of topological insulators and superconductors in three spatial dimensions
    Schnyder, Andreas P.
    Ryu, Shinsei
    Furusaki, Akira
    Ludwig, Andreas W. W.
    PHYSICAL REVIEW B, 2008, 78 (19)
  • [10] Hyperboloidal evolution of test fields in three spatial dimensions
    Zenginoglu, Anil
    Kidder, Lawrence E.
    PHYSICAL REVIEW D, 2010, 81 (12):