There exist highly critically connected graphs of diameter three

被引:0
|
作者
Kriesell, Matthias [1 ]
机构
[1] Univ Hamburg, Math Seminar, D-20146 Hamburg, Germany
关键词
critical connectivity; diameter;
D O I
10.1007/s00373-006-0672-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let kappa(G) denote the (vertex) connectivity of a graph G. For l >= 0, a noncomplete graph of finite connectivity is called l-critical if kappa(G-X) = kappa(G)-vertical bar X vertical bar for every X subset of V(G) with vertical bar X vertical bar <= l. Mader proved that every 3-critical graph has diameter at most 4 and asked for 3-critical graphs having diameter exceeding 2. Here we give an affirmative answer by constructing an l-critical graph of diameter 3 for every l >= 3.
引用
收藏
页码:481 / 485
页数:5
相关论文
共 50 条
  • [31] The maximum genus of graphs with diameter three
    Huang, YQ
    Liu, YP
    DISCRETE MATHEMATICS, 1999, 194 (1-3) : 139 - 149
  • [32] Ramanujan graphs with diameter at most three
    Ebrahimi, Mahdi
    arXiv,
  • [33] Radio number of graphs of diameter three
    Sweetly, R.
    Joseph, J. Paulraj
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2007, 10 (05): : 721 - 730
  • [34] Diameter three orientability of bipartite graphs
    Chen, Bin
    Chang, An
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [35] Pebbling Graphs of Diameter Three and Four
    Postle, Luke
    Streib, Noah
    Yerger, Carl
    JOURNAL OF GRAPH THEORY, 2013, 72 (04) : 398 - 417
  • [36] On (s,t)-supereulerian graphs in locally highly connected graphs
    Lei, Lan
    Li, Xiaomin
    Wang, Bin
    Lai, Hong-Jian
    DISCRETE MATHEMATICS, 2010, 310 (04) : 929 - 934
  • [37] Three Infinite Families of Shilla Graphs Do Not Exist
    A. A. Makhnev
    I. N. Belousov
    M. P. Golubyatnikov
    M. S. Nirova
    Doklady Mathematics, 2021, 103 : 133 - 138
  • [38] Three Infinite Families of Shilla Graphs Do Not Exist
    Makhnev, A. A.
    Belousov, I. N.
    Golubyatnikov, M. P.
    Nirova, M. S.
    DOKLADY MATHEMATICS, 2021, 103 (03) : 133 - 138
  • [39] Non-Three-Colourable Common Graphs Exist
    Hatami, Hamed
    Hladky, Jan
    Kral, Daniel
    Norine, Serguei
    Razborov, Alexander
    COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (05): : 734 - 742
  • [40] Count and cofactor matroids of highly connected graphs
    Garamvolgyi, Daniel
    Jordan, Tibor
    Kiraly, Csaba
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 166 : 1 - 29