Non-Three-Colourable Common Graphs Exist

被引:32
|
作者
Hatami, Hamed [1 ]
Hladky, Jan [2 ,3 ]
Kral, Daniel [4 ]
Norine, Serguei [5 ]
Razborov, Alexander [6 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[2] Charles Univ Prague, Fac Math & Phys, Dept Appl Math, Prague 11800, Czech Republic
[3] Univ Warwick, Dept Comp Sci, DIMAP, Coventry CV4 7AL, W Midlands, England
[4] Charles Univ Prague, Fac Math & Phys, Inst Theoret Comp Sci, Prague 11800, Czech Republic
[5] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[6] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
来源
COMBINATORICS PROBABILITY & COMPUTING | 2012年 / 21卷 / 05期
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会; 英国工程与自然科学研究理事会; 俄罗斯基础研究基金会;
关键词
D O I
10.1017/S0963548312000107
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A graph H is called common if the sum of the number of copies of H in a graph G and the number in the complement of G is asymptotically minimized by taking G to be a random graph. Extending a conjecture of Erdos, Burr and Rosta conjectured that every graph is common. Thomason disproved both conjectures by showing that K-4 is not common. It is now known that in fact the common graphs are very rare. Answering a question of Sidorenko and of Jagger, St' ovicek and Thomason from 1996 we show that the 5-wheel is common. This provides the first example of a common graph that is not three-colourable.
引用
收藏
页码:734 / 742
页数:9
相关论文
共 50 条
  • [1] Three-colourable perfect graphs without even pairs
    Chudnovsky, Maria
    Seymour, Paul
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (02) : 363 - 394
  • [2] Interval colourable orientations of graphs
    Borowiecka-Olszewska, Marta
    Drgas-Burchardt, Ewa
    DISCRETE MATHEMATICS, 2024, 347 (11)
  • [3] The deficiency of all generalized Hertz graphs and minimal consecutively non-colourable graphs in this class
    Borowiecka-Olszewska, Marta
    Drgas-Burchardt, Ewa
    DISCRETE MATHEMATICS, 2016, 339 (07) : 1892 - 1908
  • [4] The existence of uniquely -G colourable graphs
    Achlioptas, D
    Brown, JI
    Corneil, DG
    Molloy, MSO
    DISCRETE MATHEMATICS, 1998, 179 (1-3) : 1 - 11
  • [5] Counterexamples to a conjecture about bottlenecks in non-Tait-colourable cubic graphs
    Steffen, E
    DISCRETE MATHEMATICS, 1996, 161 (1-3) : 315 - 315
  • [6] Diameter of 4-colourable graphs
    Czabarka, E.
    Dankelmann, P.
    Szekely, L. A.
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) : 1082 - 1089
  • [7] The chromatic profile of locally colourable graphs
    Illingworth, Freddie
    COMBINATORICS PROBABILITY & COMPUTING, 2022, 31 (06): : 976 - 1009
  • [8] Universal H-Colourable Graphs
    Izak Broere
    Johannes Heidema
    Graphs and Combinatorics, 2013, 29 : 1193 - 1206
  • [9] Universal H-Colourable Graphs
    Broere, Izak
    Heidema, Johannes
    GRAPHS AND COMBINATORICS, 2013, 29 (05) : 1193 - 1206
  • [10] Uniquely colourable graphs and the hardness of colouring graphs of large girth
    Emden-Weinert, T
    Hougardy, S
    Kreuter, B
    COMBINATORICS PROBABILITY & COMPUTING, 1998, 7 (04): : 375 - 386